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Abstract

This Ph.D. thesis addresses various problems arising from materials science and
tackles them with techniques of the Calculus of Variations. The common theme
is the presence of an energy—or a sequence of them—describing some physical
system.

The thesis is divided in two parts. In the first one, we address three different
elasticity problems for lower dimensional bodies, and we employ Γ-convergence
as main tool. First, we derive a hierarchy of plate models for a singularly perturbed
elastic energy allowing for different phases. Precisely, we assume that the elastic
energy is minimized on a finite number of copies of SO(3), a setting that is useful
to describe solid-solid phase transition. The singular perturbation is taken in such
a way that only one phase is present when the thickness of the plate h goes to zero.

Then, we discuss the stability of the Von Kármán model for plates under loads
of order h2. The main novelty here is that we do not clamp the boundary of the
plate, that is thus free to rotate. We derive a new compatibility condition between
the limit force and the Von Kármán model. If this compatibility condition is not in
force, then the Von Kármán model ceases to be valid.

Lastly, we derive a hierarchy of models for ribbons, starting from an interme-
diate, two-dimensional, elastic energy. The ribbon is modelled as a strip and its
thickness has the role of a parameter in the energy. We show that this choice is
well-suited to describe the behaviour of a ribbon, and we further investigate some
scalings that are still open when starting from the three-dimensional model.

In the second part, we discuss two problems motivated by the study of dis-
locations, defects responsible for plastic response in metals. We first analyse an
anisotropic nonlocal energy of Riesz type with physical confinement, that under
certain conditions describes the interactions between edge dislocations. Such an en-
ergy can also be seen as an anisotropic variant of classical capacitary functionals in
potential theory. Under suitable assumptions, we prove existence and uniqueness
of minimizers, and we explicitly characterize them.

Then, we change framework, and we consider a two-dimensional rectangular
cross-section of a crystal whose vertical boundaries are rotated of opposite small
angles α. We show that, in a suitable modelling setting, a vertical grain boundary
emerges and its energy scaling in α is consistent with the one predicted in the
engineering literature.
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1
Introduction

Even before our undergraduate studies, we are taught that many phenomena we
observe can be effectively described by means of a principle of minimal energy.
An object falling due to the gravitation force or a spring being pulled by our hand
follow the same underlying principle: they are approaching the state of lowest
energy—the ground state. For this reason, and many others, it was clear since the
very first development of Calculus that techniques useful to characterize and/or
find extremal points of functionals were crucial to improve our comprehension of
the world.

The Calculus of Variations offers many techniques to find, characterize, and/or
qualitatively study extremal—or critical—points of an energy functional. Their
flexibility led to great advancements in many areas of mathematics, from geometry
to regularity theory.

In this thesis, we focus on problems arising from materials science, and we
employ techniques from the Calculus of Variations to study them. The common
theme, suffice to say, is the presence of some underlying energy. The thesis is
divided in two parts: in Part I, we address various elasticity problems for lower
dimensional bodies, such as plates and ribbons; here Γ-convergence is the main
tool we employ. In Part II, we answer questions arising from plasticity, with very
different approaches, specific to the problem we analyse. The present introduction
is thus divided in two parts.

1.1 Introduction to part I

Understanding the elastic response of a slender body is of great relevance in
engineering and manufacturing. For example, it is important to know what kind of
load a thin object can bear, how the small thickness is related to it, how boundary
conditions influence the elastic response, etc. An extensive literature is devoted
to the elasticity theory of slender bodies. Without claiming to be exhaustive, we
recall the monographs [Lov27; Cia97a; Cia97b; Ant05; Lew23].

The different nature of thin objects makes the mathematical analysis extremely

7



8 CHAPTER 1. INTRODUCTION

challenging. Different techniques might be employed for flat and non-flat bodies,
such as shells and plates, or for objects with different dimensionality, as beams,
rods, and ribbons. Besides the intrinsic difference between the various types of
slender bodies, one may work in very different elastic settings, ranging from
isotropic linear elasticity, to anisotropic hyperelasticity, contributing even more to
the complexity of the field.

In the mechanical literature, one can find a great variety of properly lower-
dimensional models that aim to describe effectively the elastic behaviour of an
almost lower-dimensional object. As an example, many two-dimensional mod-
els have been proposed for plates, such as the Kirchhoff–Love equations [Kir50;
Lov27], the Von Kármán’s equations [Föp07; Von07; Von10], the membrane theory,
the Reissner–Mindlin theory [Rei44; Rei44; Min51], the hierarchic plate theory,
etc. (see also [Cia97a, Section 1.9] and the references contained therein). The
main advantage of these models is that they are simpler to treat mathematically
and, even more importantly, easier to handle numerically. However, in practical
applications, any thin object is properly three-dimensional. Thus, it is natural to
view these lower-dimensional models as approximations of a three-dimensional
elastic model when one or more dimensions are small enough.

These considerations lead us to a natural question: given a slender body with
some boundary conditions and/or applied loads, which model should we use to
approximate its elastic behaviour? In other words, can we mathematically justify
the validity of these models, under appropriate conditions? Indeed, many of the
lower-dimensional models mentioned above are derived by means of some a priori
assumptions, either of mechanical or geometrical nature, that we would like to
rigorously justify or to derive a posteriori.

A successful mathematical approach, which is the one we employ in this
thesis, is based on Γ-convergence. This is a variational notion of convergence for
sequences of functionals introduced by De Giorgi in [DF75] (see also [Dal93; Bra06]
for a more modern treatment). The main property that makes Γ-convergence well
suited to tackle our question is the following: once Γ-convergence is proved with
respect to some topology T, if the sequence of functionals is equicoercive in T, then
(quasi)-minimizers converge to minimizers of the Γ-limit, where the convergence is
in the topology T. Roughly speaking, this means that ground states (or solutions)
to the three-dimensional problem are good approximations, in the sense of T, of
the ground states (or solutions) of the lower-dimensional problem.

It is clear that the choice of the topology is a critical issue. Indeed, we should
pick one coarse enough to have equicoercivity, but finer enough to prove Γ-
convergence. Chapters 3 to 5 have thus the same structure: firstly, we choose
the topology that is naturally induced by the energy to ensure equicoercivity, then
we move to the proof of Γ-convergence.

In this thesis we focus on two kinds of slender bodies: plates in Chapters 3
and 4 and ribbons in Chapter 5.

1.1.1 Rigorous derivation of plate models

In recent years, a vast literature has been devoted to the rigorous derivation of
plate models by means of Γ-convergence. To better understand these results, let us
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introduce some notation. Consider the reference configuration of a hyperelastic
thin plate Ωh := S × (−h/2, h/2), where the mid-plane S is a sufficiently regular
subset of R2 and h is the small thickness. Given a deformation w : Ωh → R3, its
elastic energy takes the form ∫

Ωh

W(∇w) dx,

where W is the elastic energy density. Since a thin plate can easily undergo large
rotations, the correct framework is that of nonlinear elasticity. We assume that
Ωh is not prestrained, that is, Id minimizes W and we suppose W to be frame
indifferent, namely

W(RM) = W(M) ∀ R ∈ SO(3), ∀ M ∈ R3×3. (1.1)

In particular, W is minimized at SO(3). Property (1.1) has a simple physical
interpretation: the energy is invariant under rigid changes of the reference frame.
We may assume the body to be subject to some dead loads fh acting on the bulk.
Hence, the total energy has the form∫

Ωh

W(∇w) dx −
∫

Ωh

fh · w dx.

Note that the forcing term involves the deformation and not the displacement,
since this change has no effect from a minimization standpoint.

w

h

Ωh := S × (−h/2, h/2)

S

Figure 1.1: A plate and its deformation.

We also introduce the energy per unit volume, and write it in terms of a rescaled
deformation as

Ih(y) :=
1
h

∫
Ωh

W(∇w) dx =
∫

Ω
W(∇hy) dx,

where y(x1, x2, x3) := w(x1, x2, hx3), and ∇h is the rescaled gradient (see Section 2.1
for its definition).

The first Γ-convergence result for plates in this setting is due to [LR95], where
the authors study the Γ-limit of

1
h

∫
Ωh

W(∇w) dx − 1
h

∫
Ωh

fh · w dx = Ih(y)−
∫

Ω
f̃h · y dx,

when the plate is clamped on a portion of the boundary and the load fh is supposed
to be of order 1. Here, f̃h(x1, x2, x3) := fh(x1, x2, hx3). When h → 0 they obtain
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the membrane theory: the limiting deformations are properly two-dimensional
and their energy depends solely on the stretching they produce on S and does
not account for bending. The Γ-convergence is obtained assuming some p-growth
condition from above on the energy density W . We mention also the further
improvement in [AM08], where the same result is proved under the more physical
assumption that W(M) = +∞ if det(M) ≤ 0.

As noted in [LR95, Theorem 10], compression requires no energy at the limit in
the membrane theory. For example, if S is a rectangle, the minimum energy under
uniaxial compressive boundary conditions scales like h3 (see also [FJM02, Section
6]). Thus, one should look at the Γ-limit of

1
h3

∫
Ωh

W(∇w) dx =
1
h2 Ih(y). (1.2)

In contrast with the membrane regime, here the energy has a higher scaling in
h. Assuming W to be minimized only at SO(3), this heuristically means that
the deformation gradients should approach, in some suitable sense, the set of
rotations. In order to compute the Γ-limit, quantitative information about this rate
of convergence is crucial.

The needed breakthrough was obtained by Friesecke, James, and Müller in
[FJM02], where they proved both a rigidity estimate, and the Γ-convergence of
(1.2) to the Kirchhoff–Love energy under compatible boundary conditions and
with loads fh of order h2 (the latter case being considered in the subsequent work
[FJM06]).

The rigidity estimate gives a quantitative version of the well-known result
by Liouville (see also [Res67] for a nonquantitative generalization of Liouville’s
theorem) stating that a map w satisfying the differential inclusion ∇w ∈ SO(3) is a
rigid rotation, i.e., w(x) = Rx + c for some R ∈ SO(3), c ∈ R3. Precisely, given a
domain Ω ⊂ R3, there is a constant C > 0, depending on Ω, such that, for every
w ∈ W1,2(Ω; R3) there exists a rotation R ∈ SO(3) satisfying

∥∇w − R∥2
L2 ≤ C∥dist(∇w, SO(3))∥2

L2 . (1.3)

The estimate above can also be interpreted as a nonlinear version of Korn’s inequal-
ity, since the tangent space to SO(3) at the identity is the space of skew-symmetric
matrices R3×3

skew.
For the thin domain Ωh, it can be seen that the constant C in (1.3) behaves as

h−2. Thus, assuming the coercivity condition

W(M) ≥ C dist2(M; SO(3)) ∀ M ∈ R3×3, (1.4)

and rewriting (1.3) in the scaled variables, we see that a bound on the rescaled
energy (1.2)provides a uniform control in h on the distance of ∇hy to some rotation.

Using this result, one can show that the limit deformations obtained in this
case are isometric immersions of the mid-plane in R3. This is consistent with the a
priori assumption of the Kirchhoff–Love theory saying that the mid-plane remains
unstreched. The Γ-limit weights the second fundamental form of the isometric
immersion, thus it penalizes bending.
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It is natural to wonder what limiting behaviour emerges from a rescaling of Ih
by a power h−α with 0 < α < 2 and α > 2.

For 0 < α < 5/3, the admissible limit deformations are the so-called short
maps: immersions y of S in R3 such that ∇yT∇y ≤ Id (see [CM07]). The energy is
trivial on the set of admissible deformations. In this case, the theory is also called
constrained membrane theory.

The Γ-convergence of h−α Ih, for 5/3 ≤ α < 2 seems to be out of reach at the
present time (see [GO97; Bel+02; JS01; CM07] for related results).

The case α > 2 is treated in [FJM06]. As we may expect, also in this regime
the rigidity estimate plays a crucial role. The authors prove that, up to a rotation
and to a translation, deformations with bounded energy converge to the identity.
Thus, the quantity of interest is now the deviation from the identity, namely, the
displacement. The authors show that the x3 average of the in-plane displacements
uh and of the out-of-plane displacements vh have different scalings. Precisely,
uh ∼ max{h2γ−2, hγ} and vh ∼ hγ−1, where γ := α/2. The regime α = 4 is a
threshold in the behaviour of uh and, as a consequence, in the behaviour of the
energy, too.

When 2 < α < 4, the limit u of the rescaled in-plane displacements and the
limit v of the rescaled out-of-plane displacements satisfy the constraint

∇uT +∇u +∇v ⊗∇v = 0, (1.5)

and the energy is quadratic in ∇2v. Constraint (1.5) has a geometric interpretation.
Precisely, u and v satisfy a so-called matching isometry condition up to the second
order, that is, the map

yε :=
(

x′

0

)
+ ε

(
0
v

)
+ ε2

(
u
0

)
satisfies ∇yT

ε ∇yε − Id = O(ε3). It can be proved that (1.5) is equivalent to the
Monge–Ampère equation det(∇2v) = 0 and that the latter ensures the existence of
an exact isometry with v as third component. This theory has been named by the
authors as the constrained Von Kármán’s theory.

If α = 4, they retrieve the classical Von Kármán’s energy. Constraint (1.5)
is relaxed, and the deviation from it appears as a stretching term in the energy,
together with a quadratic term in ∇2v, accounting for bending.

When α > 4 they obtain the usual linear theory, with the energy being quadratic
in both ∇2v and ∇uT +∇u.

We also mention the recent preprint [FGZ25], where the Reissner–Mindlin
theory is rigorously derived.

Multi-well energies

All the Γ-convergence results we recalled for α ≥ 2 are obtained under the assump-
tion that W is minimized exactly at the set of rotations. This is a fundamental
hypothesis to apply the rigidity estimate (1.3). In Chapter 3 of this manuscript,
we are interested in treating the case where W is minimized at a finite number of
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copies of SO(3), that we call wells. Precisely, we assume that W is minimized at
the set

K :=
l⋃

i=1

SO(3)Ui =:
l⋃

i=1

Ki,

where U1, . . . , Ul are symmetric and positive-definite matrices. This setting is
relevant, for example, in the modelling of solid-solid phase transitions (see [BJ87]).

Assuming (1.4) with SO(3) replaced by K, the boundedness of the energy
would grant us L2-closeness of the deformation gradients to K. However, this
is not enough to get compactness for sequences of deformations with bounded
energy. Indeed, it is well-known that the rigidity estimate fails without further
assumptions on the wells. For example, if two of the wells are rank-one connected,
it is possible to construct continuous deformations with zero elastic energy, whose
gradient oscillates between the two wells.

A rich literature has been devoted to the extension of the rigidity estimate to
the multi-well setting under suitable separation properties for the wells. For two
strongly incompatible wells, the rigidity estimate has been proved in [CM04] (and
later with a different proof in [DS06]). A further generalization is given in [CC10],
for a finite number of well-separated wells.

One possible way to overcome the loss of compactness is to singularly perturb
the elastic energy by adding a higher order term of the form

ηp(h)
∫

Ω
|∇2

hy|p dx ,

where η(h) → 0 as h → 0 and p > 1 is a suitable exponent. This is a classical
way of selecting preferred configurations, as for instance in the Van der Waals–
Cahn–Hilliard theory. Indeed, this additional term introduces a competition in the
minimization problem: the elastic energy favours deformations with gradient in K,
while the perturbation penalizes transitions between the wells.

Various analyses have been carried out in this setting. In the membrane scaling
α = 0, a full description of the Γ-limit of the perturbed energy with p = 2 is ob-
tained in [FFL06; DFL10]. The expression of the Γ-limit depends on the behaviour
of η(h)/h. We also recall the work by Shu [Shu00], where an additional homogeniz-
ation parameter is taken into account. Note that in the original work on membrane
theory [LR95] no conditions on the minimization set W were required. In particu-
lar, no penalty term is needed to derive membrane theory in case of a multi-well
energy. We also recall the work [FP04], where Γ-convergence in the membrane
regime is computed in a different topology. Using the notion of Young’s measure,
the authors manage to preserve information on the fine oscillations between the
wells.

In Chapter 3, we focus on the energy regimes α ≥ 2, and we do not assume
any hypotheses of separation or connectedness of the wells. We follow ideas from
[Ali+18], where the linearization of a multi-well elastic energy is studied. We show
that the perturbation coefficient η(h) can be chosen in such a way that, at the limit,
deformation gradients are forced to fall into a single well and at the same time
the perturbation term becomes negligible. Under these scaling assumptions on
η(h), we show that the L2-norm of the distance of the deformation gradient from a
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specific well can be bounded by a suitable power of the perturbed elastic energy
(see Section 3.2). In particular, once such a well has been identified, the usual
rigidity estimate can be applied to deduce compactness.

The hierarchy of plate models that we derive is similar to the one discussed
earlier. However, a key difference is the dependence of the limit models on the
well around which we linearize.

For α = 2, we retrieve the Kirchhoff’s model (see Theorem 3.1.1). Sequences of
deformations with Ih ∼ h2 converge to isometric immersions of the mid-plane into
R3, for a flat metric depending on the well. The resulting model is similar in spirit
to the one obtained in [BLS16], where the authors consider a prestrained model
and the limit deformation realizes an isometric immersion of the mid-plane for a
metric depending on the prestrain.

For 2 < α < 4, the Γ-limit is given by the constrained Von Kármán’s model,
where the Von Kármán’s constraint now depends on the well and takes the form

∇uT +∇u + |U−1
i e3|2∇v ⊗∇v = 0 . (1.6)

Here SO(3)Ui is the well selected by the energy, and u and v are the limiting
in-plane and out-of-plane displacements with respect to the reference deformation
x 7→ Uix. As for the single-well case treated in [FJM06], (1.6) is a matching isometry
condition up to the second order, for a well-dependent flat metric (see Section 3.1).

For α = 4 and α > 4, we retrieve the Von Kármán’s and the linearized Von
Kármán’s model, respectively. All the Γ-convergence results for α > 2 are stated in
Theorem 3.1.3. The Von Kármán’s model we obtain is similar to the one derived in
[RLR17] in the prestrained case.

Concerning the proofs, once compactness is established, the liminf inequality
can be obtained arguing as in [FJM02; FJM06]. Since the penalty term requires
additional regularity, the truncation argument used in [FJM02; FJM06] for the
construction of the recovery sequences cannot be applied and is replaced by
suitable approximation results. In particular, for 2 ≤ α < 4 we need to assume
some higher regularity for the mid-plane S.

The last part of Chapter 3 is devoted to the convergence of (quasi-)minimizers
for the pure traction problem, under the action of some dead loads fh. We assume
fh to be of order hγ+1, where γ = α/2. For α > 2 we expect the limiting force term
to depend only on the out-of-plane displacement (which is of order hγ−1) and not
on the in-plane displacement (which is of order h2γ−2 for 2 ≤ α ≤ 4, hγ for α > 4).
This is indeed the case. However, since the plate is not clamped, the presence of the
force term may reduce the rotation invariance of the problem. To analyse this issue,
we follow the approach used in [MM21], where the notion of optimal rotations
is introduced. These are rotations preferred by the forces, that can be different
from the rotations selected by the rigidity estimate, around which linearization
takes place. We show how this concept can be adapted to the dimension reduction
setting. In this framework, we deduce a minimization property for the limit of
(quasi-)minimizing sequences. The forcing term we obtain at the limit is of the
form ∫

Ω
f · RU−1

j e3v dx,

where R is an optimal rotation, Uj is the well selected by the energy and v is the
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limit of the rescaled out-of-plane displacements. In particular, the force acting
on ve3 is of the form U−1

j RT f . A precise statement of these results is given in
Theorems 3.1.6 and 3.1.8.

The content of Chapter 4 can also be found in [Tol25a].

The pure traction problem for the Von Kármán’s model

After its rigorous derivation, the Von Kármán’s model has received great attention.
Without attempting to be exhaustive, we recall some lines of research: derivation
of viscoelastic Von Kármán’s models for plates [FK20], homogenization of Von
Kármán’s plates models [Vel16; NV13], and analysis in the dynamic case of the
Von Kármán’s equations [AMM10; AMM11].

In [FJM06] the authors show that the derivation of the Von Kármán’s model,
corresponding to the energy regime α = 4, is compatible with loads fh of order h3

in the normal direction to the plate. A natural question is whether forces acting in
any direction can be included in this analysis. Since the in-plane displacements
scale as h2 the applied loads in the planar direction should be of order h2 to be
preserved at the limit. Howevere, such a choice is compatible not only with the Von
Kármán’s regime, but also with the Kirchhoff’s and the constrained Von Kármán’s
regimes. This is due to the fact that in the last two cases, we have, respectively,

(i) in-plane displacements of order 1 and elastic energy of order h2,

(ii) in-plane displacements of order hα−2 and elastic energy of order hα for some
2 < α < 4.

Therefore, in both scenarios the work done by the forces and the elastic energy have
the same scaling. Thus, a sequence of deformations yh with total energy of order
h4 may have elastic energy that scales as hα for any 2 ≤ α ≤ 4, leading to different
limiting behaviours. In particular, if α < 4, such a sequence has unbounded
elastic energy in the Von Kármán’s regime, resulting in a loss of compactness. This
phenomenon can be interpreted as an instability of the Von Kármán’s model under
the presence of some load (see [LM09]).

As we already remarked, the situation is different when the applied forces are
purely normal. Indeed, in this case, the h3 scaling for forces is only compatible
with the Von Kármán regime, where the normal displacement of order h. As a
consequence, there is no ambiguity between the elastic energy regimes.

Planar forces have been considered in [LM09] using a clever exclusion principle.
The authors noted that there is a critical load f that leads to the loss of validity of
the Von Kármán’s model. Under some additional assumptions, they also proved
that beyond this critical load, the infimum of the total Von Kármán’s energy is −∞.
However, to avoid the mix-up of planar and normal components of both forces
and displacements due to rotation invariance, they assumed part of the boundary
to be clamped.

In Chapter 4, we extend this analysis to the purely Neumann case. Since
the body is free to rotate, one cannot distinguish between normal and planar
components of the applied forces. Thus, we suppose to have a sequence of forces
fh that scale as h2 in all directions. For simplicity, we further assume the sequence
to be of the form fh = h2 f for some given f .
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The first question to understand is how the load affects the rotation invariance
of the plate. In general, one cannot expect the body to prefer just one specific
rotation, in contrast with the case of clamped boundary conditions. It turns out
that the concept of optimal rotations, already recalled in Chapter 3, is exactly
the one needed. The set R of such rotations is a submanifold of SO(3) that
in our framework enjoys some additional properties which follow by the two-
dimensional nature of the problem.

Secondly, we investigate how the stability conditions defined in [LM09] can be
extended and how they relate to the rotational degree of freedom that the plate
enjoys. We prove that one of the following alternatives holds (see Theorem 4.1.3
for a precise statement):

(i) either the load is strong enough to have a non-trivial minimizer of the Kirch-
hoff model (failure of the stability condition (S1)),

(ii) or the load is strong enough to have a non-trivial minimizer of the con-
strained Von Kármán’s model (failure of the stability condition (S2)),

(iii) or the Von Kármán’s model is valid.

This result is similar in spirit to [LM09, Theorem 4]. Moreover, in Theorem 4.1.4 we
show that the stability condition (S1) implies condition (S2) as soon as the intensity
of the load decreases. The above implication is analogous to [LM09, Theorem 6].

Compared to the analysis in [LM09], we observe a new phenomenon, which
is one of the main novelties of this work: if for some optimal rotation R we have
RT f · e3 ̸= 0, then the stability condition (S1) must fail and both the Von Kármán’s
model and its constrained version do not apply. More precisely, whenever RT f ·
e3 ̸= 0, every sequence of quasi-minimizers, whose total energy scales like h4,
has unbounded elastic energy in both the Von Kármán’s and the constrained Von
Kármán’s regimes. The privileged role of e3 is due to it being the direction along
which the plate is thin. The precise statement is given in Theorem 4.1.2. One
can interpret this result in the following way: it is possible to have a non-trivial
minimizer of the Kirchhoff model either increasing the load (as already shown
in [LM09]) or applying a force for which there is an optimal rotation R such that
RT f · e3 ̸= 0.

Lastly, similarly to [LM09, Theorem 27], we prove that if (S2) holds and RT f ·
e3 = 0 for every optimal rotation, the total Von Kármán’s energy attains its infimum.
Conversely, if (S2) fails, the Von Kármán’s total energy is unbounded as soon as
the load undergoes a slight increase. In other words, f is a critical load. These
results are proved in Theorem 4.1.5.

The content of Chapter 4 can also be found in [Tol25b].

1.1.2 Rigorous derivation of models for ribbons

A ribbon is a slender body whose length is much larger than its width, which in
turn is much larger than its thickness. Mathematically, it can be described by a set

Ωh := (0, L)× (−h/2, h/2)× (−δh/2, δh/2),

with L > 0 being its length, h ≪ L being its width, and δh ≪ h its thickness.
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A renewed interest in the rigorous derivation of one-dimensional models for
ribbons via Γ-convergence has blossomed in recent years, motivated by the rich
variety of behaviours that may emerge, depending on the behaviour of δh with
respect to h. We recall also the setting δh ∼ h for the description of rods, treated in
[MM03; MM04; Sca06; Sca09].

Assuming the ribbon to be hyperelastic, the energy per unit volume takes the
form

Ih(w) :=
1

hδh

∫
Ωh

W(∇w) dx =
∫

Ω
W(∇h,δh

y) dx,

where y(x1, x2, x3) := w(x1, hx2, δhx3), Ω := (0, L)× (−1/2, 1/2)2, and ∇h,δh
is the

rescaled gradient.
Inspired by the derivation of plate theory in [FJM02; FJM06], the Γ-convergence

of various rescalings of Ih has been studied in [FMP12; FMP13]. Assuming the
energy Ih to scale as ε2

h, the authors distinguish three regimes:

(i) the subcritical regime, for δh ≪ εh,

(ii) the critical regime, for δh ∼ εh,

(iii) the supercritical regime, for δh ≫ εh.

The subcritical regime corresponds roughly to the scaling 0 ≤ α < 2 for
plates. Indeed, if εh ∼ 1 they retrieve the model already derived in [ABP91] for
strings, that inspired the work [LR95] for plates. The limit energy depends only on
stretching and does not account for bending. When instead εh → 0, the limiting
deformation are short maps defined on the mid-line, and the limiting energy is
zero on the set of such deformations.

The critical regime corresponds to the Kirchhoff–Love theory for plates. How-
ever, the authors manage to compute the Γ-limit only for h2 ≪ δh. In this case,
they show that sequences of deformations with bounded energy identify a Frenet–
Serrin frame d1, d2, d3 describing an isometric immersion of the mid-line in R3.
The frame satisfies the additional constraint

∂1d1 · d2 = ∂1d2 · d1 = 0. (1.7)

Mechanically, (1.7) can be interpreted as a no-bending condition within the plane
of the strip. The cases δh ≪ h2 and δh ∼ h2 are still open even tough a candidate
Γ-limit is known for δh ≪ h2, as we see later.

The supercritical regime is analogous to the Von Kármán’s energy scaling
α > 2 for plates. Three different models emerge, depending on the asymptotics
behaviour of εh/δ2

h. Roughly speaking, they correspond to the constrained, the
standard, and the linearized Von Kármán’s theory for plates. As it happens for
plates, in the supercritical regime the quantity of interest is the displacement, since
deformations approach the identity, up to a rotation and to a translation. Up to
rescaling, the components uh,1, uh,2, and uh,3 of the displacement are proved to
converge to u1, u2, and u3, having a precise structure:

(a) if εh ≪ δ2
h or εh ∼ δ2

h, then u is a Bernoulli–Navier displacement, that is, u2
and u3 are independent of x2 and x3, while u1 is affine in both x2 and x3,
with coefficients given by −∂1u2 and −∂1u3, respectively,
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(b) if εh ≫ δ2
h, then u2 = 0 and u1, u3 depend only on x1 and satisfy the constraint

2∂1u1 + (∂1u3)
2 = 0. (1.8)

Condition (1.8) is a one-dimensional version of (1.5). In the subcase εh ≫ δ2
h,

difficulties similar to the ones of the critical case are encountered, and the Γ-limit
is computed only under the additional condition h2εh ≪ δ2

h.
The work of Chapter 5 is motivated by better understanding the regimes where

the identification of the Γ-limit is still lacking. Heuristically, the two conditions
h2 ≪ δh in the critical regime and h2εh ≪ δ2

h in the supercritical regime mean
that the thickness δh is not so small with respect to the width h, so that the ribbon
behaves not so differently from a rod. Instead, when the thickness is much smaller
that the width (e.g., when δh ≪ h2 in the critical scaling), we expect the ribbon
to behave more similarly to a plate. As a first approximation, one may start from
a two-dimensional model on a thin strip Ωh := (0, L)× (−h/2, h/2), where the
thickness is completely neglected. Its Γ-limit as h → 0 should possibly provide
insights on the missing cases in [FMP12; FMP13].

In [Fre+15], the Kirchhoff–Love model for plates is considered as starting point.
The Γ-limit is a corrected Sadowsky’s model, as it coincides with the relaxation
of the model proposed by Sadowsky in [Sad30] (see also [HF16] for an English
translation), to describe the optimal shape of a Möbius band at rest (see also
[Fre+22; Fre+16]). This functional is expected to coincide with the Γ-limit in the
critical regime when δh ≪ h2.

In [Fre+17], starting from two-dimensional Von Kármán’s models on the strip
Ωh, a full characterization of their Γ-limits as h → 0 is shown. For the Von Kármán’s
model and the linearized model, the Γ-limit coincides with the one computed in
[FMP13] in the supercritical regime when εh ∼ δ2

h and εh ≪ δ2
h, respectively. For

the constrained Von Kármán’s model instead, a different Γ-limit of Sadowsky’s
type is found, that should correspond to the missing subcase δ2

h ≪ h2εh.
In this thesis we study an intermediate two-dimensional energy, with the hope

of shedding light on the missing Γ-limits in the three-dimension to one-dimension
convergence. For a thin strip Ωh := (0, L)× (−h/2, h/2) we introduce the two-
dimensional energy∫

Ωh

|∇wT∇w − Id |2 dx + δ2
h

∫
Ωh

|∇2w|2 dx,

that now depends on the thickness parameter δh. As it is customary, we consider
the energy per unit volume, and we rescale the strip to Ω := Ω1, writing the energy
in terms of the rescaled deformation

Eh(y) :=
∫

Ω
|∇hyT∇hy − Id |2 dx + δ2

h

∫
Ω
|∇2

hy|2 dx. (1.9)

The mechanical interpretation of this energy is clear: the first term penalizes
stretching whereas the second penalizes bending.

Energy (1.9) is frequently used in the physical and engineering literature. It
can be seen as an expansion of the three-dimensional energy with respect to the
thickness parameter. Indeed, the results recalled in in the previous sections show
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that the stretching term is of order one in the thickness, whereas the bending term
is of order δ2

h.
In Chapter 5, we study the Γ-convergence of δ−α

h Eh for α ≥ 2. These scalings
correspond exactly to the critical (α = 2) and the supercritical (α > 2) regimes
considered in [FMP12; FMP13].

Our first result is that the Γ-limit of δ−2
h Eh depends on the asymptotic behaviour

of δh/h2, as expected. When δh ≫ h2 we obtain the same model of [FMP12] (see
Theorem 5.2.2), whereas when δh ≪ h2 we show the Γ-convergence to the corrected
Sadowsky’s model mentioned above (see Theorem 5.2.7).

Let us briefly clarify the role of the ratio δh/h2. The quantity δh/h2 is linked with
the behaviour of det(∇2

hy), that roughly speaking represents the Gauss’ curvature
of the deformed strip y(Ω). Recall that for an isometric immersion, the Gauss’
curvature is zero, and so is det(∇2

hy). It is clear by the form of the energy δ−2
h Eh

(see (1.9)) that the faster δh is going to zero, the closer y should be to an exact
isometric immersion of the strip. This phenomenon can be quantified by means of
the following estimate:

∥det(∇2
hyh)∥L1 ≤ C

δh
h2 , (1.10)

for a sequence yh such that Eh(yh) ≤ Cδ2
h. In particular, when δh ≪ h2, the quantity

det(∇2
hyh) converges to zero. Instead, when δh ≫ h2, the energy fails to provide

any bound on det(∇2
hyh). In other words, when δh ≪ h2, deformations are so close

to isometric immersions that the Γ-limit coincides with the one computed from the
Kirchhoff’s functional. The relaxation of the constraint det(∇2

hy) = 0 leads to the
corrected Sadowsky’s model.

In Section 5.3 we discuss the Γ-convergence of δ−α
h Eh for α > 2. We identify

three different regimes:

(i) the constrained Von Kármán’s regime 2 < α < 4,

(ii) the Von Kármán’s regime α = 4,

(iii) the linearized regime α > 4.

In the last two cases, we show that the Γ-limits coincide with the one obtained in
[FMP13].

When α ∈ (2, 4), we split the analysis depending on the asymptotics of δ
2−γ
h /h2,

where γ := α/2, in agreement with the regimes identified in [FMP13]. As in the
scaling α = 2, the behaviour of δ

2−γ
h /h2 is linked with a suitable rescaling of

det(∇2
hy). In both cases δ

2−γ
h ≪ h2 and δ

2−γ
h ≫ h2 we find that the Γ-limits

coincide with the ones obtained in [Fre+17] and [FMP13], respectively.
Our results show that the intermediate energy Eh is a good candidate to un-

derstand the Γ-limit behaviour of Ih for different scalings. Unfortunately, at the
present time we are not able to identify the Γ-limit when δh ∼ h2 for the energy
δ−2

h Eh and when δ
2−γ
h ∼ h2 for the energy δ−α

h Eh. These regimes are completely
open and no candidate Γ-limit is known. In these cases, estimates of the type (1.10)
are still enough to guarantee convergence of the Gauss’ curvature, however, to a
limit possibly different from zero. Further comments on the specific difficulties we
encounter are highlighted at the end of Section 5.2.
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The content of Chapter 5 is part of an ongoing project [MT25] in collabora-
tion with M. G. Mora, inspired by some preliminary computations contained in
[Fre+25].

1.2 Introduction to part II

Under small tensile load most solid materials show elastic behaviour: once the
load is removed, the body goes back to its original shape. However, when the
strain reaches a critical threshold—the yielding point—the deformation becomes
irreversible and plastic phenomena intervene. The mathematical modeling of
plasticity is a subject of ongoing debate and research, where multiple models
and theories have been proposed. Without claiming to be exhaustive, we refer
to [Lub08; Hil98] for an extended treatment. For metals, it is widely accepted in
the mechanical literature that plastic effects are the macroscopic result of both the
emergence and the motion of dislocations—microscopic defects in the crystalline
atomic structure. In this manuscript, we focus on this latter class of materials.

In a two-dimensional setting, assuming the crystal lattice of a metal to be
perfectly square, we can envision the atoms arranged along parallel lines. An
edge dislocation is the defect produced by the presence of an extra half-line of
atoms. The microscopic presence of an edge dislocation is usually described by
the so-called Burgers’ vector, that describes the amount and the direction of the
atomic slip. In this setting, the Burgers’ vector is defined as the vector needed to
close a loop around the defect. More precisely, imagine drawing a loop around the
defect in the crystal lattice, and then to draw the same circuit in a perfect reference
crystal. In the presence of a defect, the new loop is not closed, and the missing
vector needed to close the loop is exactly the Burgers’ vector (see Figure 1.2). Note
that the Burgers’ vector always lies in the lattice itself.

b

Figure 1.2: The Burger’s vector b

The problems addressed in this thesis are framed in a semi-discrete setting,
where the metal is treated as a continuum, averaging out its crystalline structure,
whereas dislocations are still modelled as point defects.

In Chapter 7, we consider a d-dimensional extension of a two-dimensional non-
local interaction problem for edge dislocations, and we provide a characterization
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of the ground states of the corresponding energy.
In Chapter 8, we change framework, and we focus on the emergence of the

so-called grains. It is empirically observed that the crystal structure of a metal after
a plastic deformation can be divided in regions, called grains, where the lattice
has different orientations. The dislocations tend to accumulate on the boundary
between these regions—the grain boundary. Starting from a model introduced in
[LL16] we propose a grain boundary construction, and we show that its energy
scaling agrees with the empirical one conjectured in [RS50].

Nonlocal interaction of dislocations and other particles

Suppose to have a two-dimensional isotropic crystal lattice and assume that all
dislocations have the same Burger’s vector, say e1. Following computations from
[Mor24, Section 1.1] and [HL82, Chapter 13–4], one can show that in a semidiscrete
setting the force experienced by a dislocation located at a point x ∈ R2 due to the
presence of another dislocation at the origin is of the form F(x) = −(c∇W(x), 0)
for some material constant c > 0, where

W(x) := − log |x|+
x2

1
|x|2 .

In this context F is called the Peach–Köhler force, and W can be regarded as its
potential energy. Assuming to have two dislocations at points x, y ∈ R2, their
interaction energy is then

W(x − y) = − log |x − y|+ (x1 − y1)
2

|x − y|2 .

The first term of the energy is repulsive and would prefer the dislocations to be as
far as possible, while the second term favours the vertical alignment of dislocations.

Considering n dislocations at the points x1, . . . , xn and letting n → ∞, it can
be shown (see, for example, [Lan72, Point 2.3.12] or [BHS19, Section 4.2]) that the
rescaled discrete energies

1
n2

n

∑
i,j=1
i ̸=j

W(xi − xj)

Γ-converge in a suitable topology to the continuous energy

I(µ) :=
∫

R2

∫
R2

W(x − y) dµ(x) dµ(y),

where µ is a probability measure.
A classical conjecture in plasticity is that at equilibrium dislocations having all

e1 as Burgers’ vector should pile up vertically in a wall-like structure (see [DŠ04;
LBN93; AHL16]). In our framework, this would amount to show that minimizers
of I have a one-dimensional and vertical support. Note, however, that because of
the repulsive nature of W , existence of minimizers can be granted only if some
confinement term is included in the energy.
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A first result in this direction is obtained in [MRS18]. There, the dislocations are
assumed to attract each other quadratically. The authors show that the minimizer
of the interaction energy I augmented by a quadratic confinement term is the
so-called semicircle law, a measure supported on a segment.

Since then, further generalizations of this result in various directions have
been proved. Firstly, a tuning of the anisotropy term by a coefficient α has been
added in [Car+19]. Then, the same problem has been considered in [MS21] where
the quadratic confinement is replaced by the constraint that measures must have
support inside a two-dimensional ellipse E.

Lastly, noting that the logarithmic kernel is the two-dimensional Coulomb’s
kernel, the problem has been considered in Rd with W replaced by an anisotropic
Riesz’ kernel of the form

Ws(x) :=
1
|x|s Φ

( x
|x|

)
,

where Φ : Sd−1 → R is the anisotropic profile and s ∈ (0, d). Note that the
Coulomb’s kernel is retrieved when s = d − 2, while the logarithmic kernel by a
suitable limit as s → 0. This extension to higher dimensions has been treated in a
series of works where the confinement is always assumed to be quadratic. Without
claiming to be exhaustive, we recall [CS22; CS23a; CS23b; Mat+23a; Mat+23b;
Fra+25].

In Chapter 7, we contribute to this line of research by characterizing the minim-
izer of

Is(µ) :=
∫

Rd

∫
Rd

Ws(x − y) dµ(x)dµ(y), µ ∈ P(E)

over the set of probability measures µ with support contained in a prescribed
d-dimensional ellipsoid E.

When Φ is constant, the interaction is isotropic and the study of minimizers
of Is is a classical problem in potential theory. If E is a compact set, one can
show that the minimizer exists and is unique. The reciprocal of the minimal
energy is the s-capacity of E (see [Lan72, Chapter II], where the s-capacity is called
(d − s)-capacity). The explicit characterization of the minimizer µiso,s of Is for Φ
constant and E given by a ball dates back to the works of Szegő, Pólya, and Riesz
[SP31; Rie88a; Rie88b]. A renovated interest brought new and different proofs, see
[DKK16]. For E given by the ball B1 centred at 0 with radius 1, the expression of
the minimizer is

µiso,s :=

{
cs,d(1 − |x|2) s−d

2 Ld(x) B1 if d − 2 < s < d,
cs,dHd−1 ∂B1 if 0 < s ≤ d − 2,

where cs,d is a normalization constant (see Lemma 7.3.1 for its exact value). The
value s = d − 2, corresponding to the Coulomb’s kernel, acts as a threshold: in
the super-Coulombic regime the minimizer is absolutely continuous with respect
to the Lebesgue measure and is supported on the whole ball, whereas in the sub-
Coulombic regime it becomes singular, and its support reduces to the boundary.

In Chapter 7 we consider a rather general anisotropic profile Φ, and we show
that the minimizer of Is exists, and it is unique provided the Fourier transform Ŵs
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is nonnegative. Under the same assumption, we prove that the minimizer can be
characterized by the following Euler–Lagrange equations (see Theorem 7.2.1):

supp µ ⊂ E, (EL1)

(Ws ∗ µ)(x) = C for µ-a.e. x ∈ supp µ, (EL2)

(Ws ∗ µ)(x) ≥ C for every x ∈ E \ N with Caps(N) = 0, (EL3)

for some constant C, where Caps is the s-capacity. Note that these conditions are
classical in potential theory, and are consistent with those of the isotropic case.

Under the condition Ŵs ≥ 0, we show that in the super-Coulombic regime,
the minimizer of Is is the push-forward of µiso,s onto E. In particular, the aniso-
tropy plays no role in the optimal distribution, which is identified solely by the
confinement term. This is a surprising result, that is however consistent with the
one already proved in dimension two for the logarithmic kernel in [MS21].

The strategy of the proof is rather simple, and it amounts to show that the
push-forward µE

s of µiso,s onto E solves the Euler–Lagrange equations. To prove
(EL2), we derive a novel integral formula for the potential function Ws ∗ µE

s in
terms of the Fourier’s transform of Ws (see Theorem 7.3.6). This idea was already
used in [Fra+25], where however the corresponding formula for the potential
function was proved only for s ∈ (0, 5] ∩ [d − 3, d). Here, instead, using a different
approximation technique, we manage to treat any Riesz exponent s ∈ (0, d) in any
dimension d. We remark that the formula we derive is valid only inside E. This is
enough for our purposes, but it is not sufficient to extend to any dimension the
results proved in the case of a quadratic confinement (see [Fra+25]).

Lastly, we discuss the sub-Coulombic regime s < d − 2, and we show that
in this case the anisotropy may change the optimal distribution. To do so, we
restrict ourselves to the easier case E = B1, and we provide an explicit example of
anisotropy Φ for which µiso,s is not the minimizer (see Section 7.4).

The main results of Chapter 7 can also be found in [Mor+25].

Construction of grain boundaries

In the last chapter of this thesis we shift our attention to a semi-discrete model
for grain boundaries proposed in [LL16], and we consider a two-dimensional
rectangular section Ω ⊂ R2 of a crystal. As dislocations are microscopic defects, we
introduce a small parameter ε > 0, representing the small size of the lattice cell. We
consider τ and λ, two positive parameters representing the rescaled Burgers’ vector
length and the rescaled size of the core region around a dislocation, respectively.
Lastly, we introduce a Bravais’ lattice B, corresponding to the crystalline structure
of the material. We remark that, in semi-discrete models, there is coexistence of
both macroscopic and microscopic scales. Thus, even if the material is represented
as a continuum, the fact that it has a crystalline structure is somehow taken into
account by the quantities ε, λ, and τ and the Bravais’ lattice B.

Heuristically, at a distance from the defects comparable to the lattice spacing,
the material’s crystalline structure should locally resemble the reference lattice
after a distortion. Conversely, the continuum approximation should break down
close to the defects. The model proposed in [LL16] describes exactly this situation.
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We may divide Ω in two regions: Bλε(S), where the dislocations concentrate
and Ω \ Bελ(S), where instead the material is a local distortion of a perfect lattice.
Here, S ⊂ Ω is a closed set and Bελ is a tubular neighbourhood of S of radius λε.

The state space is given by pairs (β, S), with β : Ω → R2×2 representing the
strain field. In order for the pair (β, S) to be admissible, some conditions are
required. Firstly, the support of curl β should be contained in S. Since curl β
represents the macroscopic Burgers’ vector, this condition grants that the defects
are contained in S. The second condition is called quantization of the averaged
Burger’s vector. If β is sufficiently regular, it can be written as∫

∂Γ
βt dx =

∫
Γ

curl β dx ∈ τεB,

where Γ is any sufficiently regular set whose boundary does not cross Bλε(S) and
t is the tangent vector to ∂Γ, suitably oriented. Taking ∂Γ to be a loop around a
defect, this condition implies that the Burgers’ vector associated with the defect
is a vector of the scaled lattice ετB. In particular, the microscopical slip that it
represents must be in the admissible directions of the lattice and of a size that is a
multiple of the rescaled lattice spacing τε.

The energy of an admissible pair (β, S) has the form

Eε(β, S) :=
1
ε

( ∫
Ω\Bλε(S)

W(β) dx + L2(Bλε(S))
)

,

where L2 is the two-dimensional Lebesgue measure. The first term of the energy
is the elastic contribution, whereas the second, also called core energy, is related to
presence of the defects.

Some words should be spent on the scaling coefficient 1/ε. When applying
incompatible boundary conditions, e.g., opposite rotations on the lateral sides of
the rectangle Ω, we expect the emergence of grains, that is, regions where the lattice
has different orientations. The energy needed for the formation of the grains should
be concentrated on the common interface—the grain boundary. When ε → 0, the
first term of the energy forces β to be close to the set of zeros of W , whereas the
second term should force the set S to approximate a one-dimensional interface, so
that L2(Bλε(S)) ∼ ε. This heuristic argument has been recently made rigorous in
[FGS25], where the authors show the Γ-convergence of Eε to an interfacial energy,
as ε → 0.

The simplest setting in which the emergence of a grain boundary is expected
is when the vertical sides of the rectangle Ω are rotated of opposite and small
angles ±α (see Figure 1.3). When the lattice is the standard square lattice, a vertical
grain boundary should appear separating two regions where the lattice is almost
perfectly rotated. In the case of two non-symmetric rotations at the boundary, one
can simply rotate the body so that the rotations become symmetric, at the cost
of accounting for a rotated Bravais’ lattice. This is exactly the setting of [RS50],
where the authors formally derive a model for the creation of such interfaces, and
show the agreement of their prediction with experimental data. In particular, they
estimate an energy of order α| log α| for the emergence of a grain-boundary.
In [FGS25], the authors show the interfacial energy arising as the Γ-limit of Eε

satisfies the latter scaling in α.
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α α

Figure 1.3: The rectangle Ω with the imposed boundary condition.

In Chapter 8, we give a simpler and more physical proof of the scaling predicted
by [RS50]. Precisely, we show that the minimum of the energy Eε under opposite
and symmetric rotations of the vertical boundaries is bounded from above by
a term of order α| log α|. The result holds for a general lattice and with any
orientation, covering also the case of non-symmetric boundary conditions. To
obtain this upper bound, we explicitly construct a field β simulating the grain
boundary, and we show that its energy is of order α| log α|.

As this result was already obtained in [FGS25, Section 5.2], we should remark
the main differences of our approaches. The strain field β we construct is piecewise
constant on a finite Cacciopoli’s partition of Ω, and thus is associated with a piece-
wise affine deformation at ε distance from the defects. Instead, the deformation
constructed in [FGS25] contains nonlinearities of the form x2/x1 and x1/x2, whose
physical meaning is unclear. In the region approximating the grain boundary, our
construction alternates in a periodic way dislocations simulating slips in the two
admissible directions of the lattice. The same strategy is used in [FGS25], albeit
with twice the number of dislocations associated with one of the two Burgers’
vector direction.

We believe that our approach is simpler, both in the construction and in the
resulting field, leading to greater possibilities of generalization.

The content of Chapter 8 is part of an ongoing project [ST25] in collaboration
with L. Scardia.
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Notation and

mathematical preliminaries

2.1 Notation and general assumptions

Low dimensional bodies. Throughout the first part of the thesis, h > 0 denotes
the small dimension of a physical object. In the following, we treat two types of low
dimensional bodies: plates—a three-dimensional body with small thickness—and
strips, whose profile is fundamentally one-dimensional and that we represent as
two-dimensional rectangles with small width. In both cases, the geometry of the
reference configuration is flat, with no prior curvature imposed to the system. In
other words, there is no prestrain. Thus, when we consider plates, h represents
their thickness, whereas when we consider strips, h represents their width.

The letter S is used to denote the lower dimensional object that we use to
describe the limiting behaviour: the mid-plane for plates or the mid-line for strips.
We use Ωh to denote the reference configuration of the full dimensional object,
namely a cylinder with height h and base S. The set Ωh is always defined so that it
is symmetric with respect to the last variable: the small dimension. For example, a
plate with thickness h is Ωh = S × (−h/2, h/2), with S a suitable subset of R2.

Elastic energy. A deformation of Ωh is described by a map w : Ωh → R3 sending
each point x ∈ Ωh to its new position w(x). Its elastic energy is induced by a
density W and is given by ∫

Ωh

W(∇w)dx.

The elastic energy density is defined either on R3×2 or R3×3, depending on whether
we are working with strips or plates, and takes values in [0,+∞]. We assume that
W is a Borel measurable function such that

(RG) W is C2 in a neighbourhood of the set KW := {W = 0},

27
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(FI) W is frame indifferent, i.e., W(RM) = W(M) for every R ∈ SO(3) and for
every M ∈ R3×3 or M ∈ R3×2, according to the context.

While the first condition is needed from a mathematical standpoint, the second
one, usually known as frame indifference, is physically motivated and describes
the invariance of the energy with respect to rigid changes of the reference frame.

In Chapter 5, where we deal with strips, the energy W has an explicit expres-
sion, satisfying both (RG)–(FI).

Dealing with plates, in Chapters 3 and 4, we allow for more general densities
W , defined on R3×3. In the latter case, the set of minimizers of the energy density
KW is made of a finite number of so-called wells, centred at U1, . . . , Ul ∈ R3×3.
Precisely,

KW =
l⋃

i=1

SO(3)Ui, (2.1)

where each set Ki
W := SO(3)Ui is a well. Note that, by (FI), if Ui ∈ KW then

SO(3)Ui ⊂ KW . We assume the matrices U1, . . . , Ul to be invertible, with positive
determinant, and such that U−1

i Uj ̸∈ SO(3) for every i ̸= j. The last condition
grants that the wells Ki

W are pairwise disjoint. By polar decomposition and (FI)
we can further assume without loss of generality U1, . . . , Ul to be symmetric and
positive definite. Whenever there is no ambiguity between different elastic energy
densities, we write K in place of KW . We say that W has a single-well structure
if l = 1. In that case, we assume that U1 := Id. If l > 1 we say that W has a
multi-well structure.

Depending on the mathematical application we pursue, we assume differ-
ent growth behaviour of W outside KW . The precise hypotheses we need are
postponed to the corresponding chapters.

Rescaled variables and energy per unit volume. Since the reference configura-
tion Ωh depends on h, it is usually preferred to rewrite the elastic energy in terms of
the rescaled reference configuration Ω := Ω1. To do so, we introduce the rescaled
deformation, that we denote by y and its rescaled gradient, that we write as ∇hy.
Precisely, y is given by the relation

y(x, z) := w(x, hz), (x, z) ∈ S × (−1/2, 1/2) =: S × I,

while the rescaled gradient is defined as

∇hy :=
(
∇xy 1

h ∂zy
)

.

By a simple change of variable, the energy takes the form

h
∫

Ω
W(∇hy) dx.

We denote by Ih the energy per unit volume, that is the elastic energy divided by h

Ih(y) :=
∫

Ω
W(∇hy) dx.

With some abuse of language, we say that Ih is the elastic energy.



2.1 NOTATION AND GENERAL ASSUMPTIONS 29

Matrices and vectors. Throughout the first part of the thesis, we use some matrix
notation that we introduce now. The vectors {ej}j=1,...,n, represent the standard
basis of Rn. We denote by Rn×n

sym and Rn×n
skew the spaces of symmetric and skew-

symmetric n × n matrices, respectively. We use Id3×2 to denote

Id3×2 :=

1 0
0 1
0 0

 .

As it is customary, we define

SO(n) := {M ∈ Rn : MT M = Id and det(M) = 1},

O(n) := {M ∈ Rn : MT M = Id}.

For n, k ∈ N with n > k, we write O(n, k) to denote

{M ∈ Rn×k : MT M = Idk×k}.

Given a matrix M ∈ R3×3 or M ∈ R3×2, we write M′ to denote the top-left
2 × 2 submatrix. For a vector v ∈ R3 we write v′ in place of (v1, v2). Similarly, we
write ∇′ to denote

(
∂1 ∂2

)
. When we are working with plates, i.e., S is a subset

of R2, we write ∇′ in place of ∇ even for functions defined on the mid-plane S, for
which ∇ = ∇′, in order to stress the dimensionality of the gradient.

We use the super(sub)scripts to denote submatrices of M ∈ R3×3 in the follow-
ing way: every missing subscript index is a removed row while every missing
superscript index is a removed column. For example, M1,2 is the 3 × 2 submatrix
given by the first two columns of M while M1,2 is the 2 × 3 submatrix given by the
first two rows of M.

Whenever we sum or multiply matrices and vectors with different dimension
we imply that the smaller one is naturally embedded in the bigger space by
adding zeros in the missing entries. For example, if M ∈ R2×2 and A ∈ R3×3 the
expression M + A means ι(M) + A where

ι : R2×2 ↪→ R3×3, M 7→
(

M 0
0 0

)
.

Given two vectors u ∈ Rk and v ∈ Rn we denote by u ⊗ v ∈ Rk×n the matrix

(u ⊗ v)ij = uivj.

For a tensor B ∈ R3×2×2, we define

det(B) :=
3

∑
j=1

(Bj11Bj22 − B2
j12).

Big O and small o notation. We often employ the big-O and small-o notation.
Given two sequences (ah), (bh) ⊂ R, recall that we write bh = O(ah) whenever, at
least for h ≪ 1, |bh| ≤ C|ah| for some constant C > 0 independent of h, whereas
we write bh = o(ah) whenever bh/ah → 0 as h → 0.
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Given three sequences (ah), (bh), (ch) ⊂ R, we write ch = O(ah, bh) meaning
that there exists a positive constant C > 0 independent of h such that |ch| ≤
C(|ah|+ |bh|). In particular, if |ah| ≪ |bh| for h → 0, we have O(ah, bh) = O(bh).

Unless otherwise stated, when we consider a sequence of functions fh and
we write fh = O(ah) we are tacitly assuming that the constant C can be chosen
uniformly in x. Similarly, the convergence fh/ah → 0 is implicitly assumed to be
uniform. If the functions fh are smooth, the constant C (and the convergence for
the small o notation) is assumed to be uniform in x and in its derivatives.

Isometric immersions. Suppose that S ⊂ R2 is an open set. We say that a
deformation w : S → R3 is an isometric immersion—with respect to the Euclidean
metric—if

∇′wT∇′w = Id .

We denote by W2,2
iso (S; R3) the space of Sobolev isometric immersions, namely

W2,2
iso (S; R3) := {y ∈ W2,2(S; R3) : ∇′yT∇′y = Id a.e. in S}.

More generally, given a flat metric represented by a 2× 2 positive-definite constant
matrix G, we say that w : S → R3 is an isometric immersion with respect to G if

∇′wT∇′w = G.

Analogously to the Euclidean case, we define

W2,2
iso,G(S; R3) := {y ∈ W2,2(S; R3) : ∇′yT∇′y = G a.e. in S}.

Dead loads and optimal rotations. In some of our results, we account for the
presence of some dead loads acting on the body. We use fh to denote a sequence
of loads acting on S, that is, a sequence of maps fh : S → R3 representing the
density of some forces. The sequence ( fh) converges in some suitable sense—that
we specify later depending on the application we have in mind—to some limit
load f .

In various results of Chapters 3 and 4, we observe that the forces acting on S
select some preferred minimizers of W . These special minimizers are the gener-
alization to our framework of the optimal rotations introduced in [MM21]. We
denote by Mh ⊂ KW the set of maximizers of the functional

Fh : KW → R, RUj 7→
∫

S
fh · RUj

(
x′

0

)
dx.

A maximizer of Fh represents a trivial deformation with zero elastic energy that
minimizes the work done by the force fh. Note that Mh is not empty by compact-
ness of KW . Similarly, we define

M := argmax
KW

F,

where

F(A) :=
∫

S
f · A

(
x′

0

)
dx.
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For j = 1, . . . , l, we define the sets Rj and Rj
h as follows

Rj := argmax
R∈SO(3)

F(RUj),

Rj
h := argmax

R∈SO(3)
Fh(RUj).

The elements of the sets Rj and Rj
h are called optimal rotations with respect to the

well centred at Uj. By (2.1), there are subsets of indices Λh, Λ ⊂ {1, . . . , l} such that

Mh =
⋃

j∈Λh

Rj
hUj,

M =
⋃
j∈Λ

RjUj.

One can prove that Rj
h and Rj are closed, connected, boundaryless, and totally

geodesic submanifolds of SO(3). Indeed, the proof of [MM21, Proposition 4.1]
does not rely on the specific structure of F or Fh, but only on their linearity. We
denote by TRj

R and NRj
R the tangent space and the normal space to Rj at the

point R, respectively. By [MM21, Proposition 4.1], we have

TRj
R =

{
RW ∈ R3×3 : W ∈ R3×3

skew, F(RW2Uj) = 0
}

, (2.2)

NRj
R =

{
RW ∈ R3×3 : W ∈ R3×3

skew, RW ⊥ TRj
R

}
. (2.3)

Similarly, we define TRj
hR and NRj

hR.
Recall that a geodesic in SO(3) is a curve of the form t 7→ RetW , where R ∈

SO(3) and W ∈ R3×3
skew. By [MM21, Lemma 4.4], every geodesic generating from a

point R ∈ Rj in tangential direction, is contained in Rj. Precisely,

R ∈ Rj =⇒ RetW ∈ Rj ∀W ∈ TRR, ∀ t ∈ R. (2.4)

The same result holds for Rj
h.

We can define the projection operators Pj and Pj
h of SO(3) onto Rj and Rj

h,
respectively. These projections have to be understood with respect to the intrinsic
distance of SO(3), i.e.,

distSO(3)(R, Q) = min
{
|W| : W ∈ R3×3

skew, Q = ReW
}

. (2.5)

They are well-defined at least in a neighbourhood of Rj and Rj
h, respectively.

If W has a single-well structure, then the latter notation can be greatly simpli-
fied, as we have M = R1 and Mh = R1

h. In the latter case we use the letter R to
denote both R1 and M.

2.2 Mathematical preliminaries

For the sake of streamlining the exposition of the next chapters and give more
emphasis to the main arguments used therein, in this section we present some
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accessory results. Some of these are variants of well-known facts, others are tech-
nical statements, or slight generalization of them. The section is further divided in
three parts: the first is concerned with some simple results about the elastic energy
density W , the second contains some technical results on isometric immersions,
and the last regards optimal rotations.

We start by stating a non-standard version of the Poincaré’s inequality, the
Generalized Dominated Convergence Theorem and the Gronwall’s Lemma.

Theorem 2.2.1. Let p ≥ 1 and let Ω ⊂ Rn be an open, bounded, and connected set with
Lipschitz boundary. Let E ⊂ Ω be a measurable set of positive Lebesgue measure. Then,
there is a constant CP depending on |E| such that

∥u∥Lp ≤ CP∥∇u∥Lp , for every u ∈ W1,p(Ω) s.t. u ≡ 0 on E.

A slightly more general result, from which Theorem 2.2.1 follows, is proved in
[Zie89, Theorem 4.4.2]. Note that the constant CP may blow up as |E| → 0.

Theorem 2.2.2 (Generalized Dominated Convergence Theorem). Let ( fk), (gk) ⊂
L1(Ω) be two sequences such that

(i) fk → f almost everywhere,

(ii) gk → g in L1(Ω),

(iii) | fk| ≤ gk for every k ∈ N.

Then
lim
k→∞

∫
Ω

fk dx =
∫

Ω
f dx.

A proof can be found, for example, in [EG15, Theorem 4, p.21].

Lemma 2.2.3 (Gronwall’s Lemma). Let η be a non-negative, absolutely continuous
function on [0, T], such that for almost every t ∈ [0, T]

∂tη(t) ≤ ϕ(t)η(t) + ψ(t),

where ϕ, ψ ∈ L1(0, T) are non-negative. Then

η(t) ≤ eC(t)
(

η(0) +
∫ t

0
ψ(s) ds

)
∀ t ∈ [0, T],

where

C(t) :=
∫ t

0
ϕ(s) ds.

We refer to [Eva10, Appendix B.2] for a proof.

2.2.1 Results concerning the elastic energy density

In this section, W is defined on R3×3 and satisfies the assumptions given in
Section 2.1. We prove some simple results concerning symmetry properties of its
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Hessian at minimizers. Moreover, we prove—under suitable growth conditions—
that the following function is well defined:

Q̄j : R2×2 → R M 7→ min
a∈R3

Qj(U−1
j (sym(M) + a ⊗ e3 + e3 ⊗ a))

where
Qj(M) := ∇2W(Uj)M : M, j = 1, . . . , l,

and Uj ∈ KW are the centres of the wells. Indeed, to rigorously derive plate
models, a linearization around a minimizer of the energy density is needed, and
the quadratic forms Q̄j play a crucial role.

Lemma 2.2.4. Suppose that Id ∈ KW . Then ∇2W(Id) is a fourth-order symmetric
tensor, namely

∇2W(Id)M : M = ∇2W(Id) sym(M) : sym(M) ∀ M ∈ R3×3.

Proof. Let A ∈ R3×3
skew and define ϕ(t) := etA for t ∈ [−1, 1]. Note that ϕ(t) ∈ SO(3)

for every t ∈ [0, 1] so that in particular

W(ϕ(t)) = 0 ∀ t ∈ [−1, 1]. (2.6)

Since ϕ′(t) = AetA and ϕ′′(t) = A2etA, differentiating (2.6) we get

0 = ∇2W(ϕ(t))∇ϕ(t) : ∇ϕ(t) +∇W(ϕ(t)) : ∇2ϕ(t) ∀ t ∈ (−1, 1). (2.7)

Since ϕ(0) = Id and ∇W(Id) = 0, from (2.7) we deduce that

0 = ∇2W(Id)A : A ∀ A ∈ R3×3
skew,

concluding the proof.

As a simple consequence, we deduce some symmetry properties of ∇2W at
other minimizers.

Lemma 2.2.5. Suppose that U ∈ KW . Let Q(M) := ∇2W(U)M : M. Then

Q(M) = Q(sym(MU−1)U) = Q(U−1 sym(UM)) ∀ M ∈ R3×3.

Proof. Define W̃(F) := W(FU). Clearly, W̃ satisfies (RG) and (FI). Moreover,
Id ∈ KW̃ . Thus, by Lemma 2.2.4 we have

∇2W̃(Id)M : M = ∇2W̃(Id) sym(M) : sym(M).

By some simple computation we get ∇2W̃(Id)M : M = Q(MU). Hence,

Q(M) = Q(MU−1U) = Q(sym(MU−1)U).

To conclude, observe that by definition of symmetric part and the symmetry of U
we have

Q(sym(MU−1)U) = Q(sym(U−1UMU−1)U) = Q(U−1 sym(UM)).
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Lastly, we show some coercivity of ∇2W at minimizers, provided W satisfies
suitable growth conditions.

Lemma 2.2.6. Suppose that U ∈ KW . Assume that W satisfies the following growth
condition:

W(M) ≥ C dist2(M, KW ), ∀ M in a neighbourhood of KW . (2.8)

Then, there exists λ > 0 such that for every M ∈ R3×3

∇2W(U)U−1 sym(M) : U−1 sym(M) ≥ λ| sym(M)|2.

Proof. Without loss of generality, by (2.1) we can assume that U = Uj for some
j = 1, . . . , l. Hence, by (2.8) we have, for ε ≪ 1

W(Uj + εU−1
j M) ≥ C dist2(Uj + εU−1

j M, KW ) = C dist2(Uj + εU−1
j M, K j

W ).

By the Taylor expansion of W at Uj (recall that the energy density W satisfies
(RG)), and by Lemma 2.2.5 we get

ε2∇2W(Uj)U−1
j sym(M) : U−1

j sym(M) + o(ε2) ≥ C dist2(Uj + εU−1
j M, K j

W )

≥ C dist2(Id+εU−1
j MU−1

j , SO(3)) = Cε2| sym(U−1
j MU−1

j )|2 + o(ε2)

= Cε2|U−1
j sym(M)U−1

j |2 + o(ε2) ≥ Cε2| sym(M)|2 + o(ε2).

Dividing by ε2 and passing to the limit as ε → 0 we conclude.

As a consequence of these properties, we can show that Q̄j is well defined
under the quadratic growth assumption (2.8).

Proposition 2.2.7. Assume that W satisfies the growth condition (2.8). Then Q̄j is
well-defined. Moreover, the function

Lj : R2×2
sym → R3, M 7→ argmin

v∈R3
{Qj(U−1

j (M + v ⊗ e3 + e3 ⊗ v))} (2.9)

is well-defined and linear.

Proof. The function is Q̄j is well-defined by the coercivity property proven in
Lemma 2.2.6. To show that Lj is well defined and linear, note that Lj(M) is the
unique vector x ∈ R3 that solves the linear optimality conditions

C(M + x ⊗ e3 + e3 ⊗ x) : (ei ⊗ e3 + e3 ⊗ ei) = 0, i = 1, 2, 3,

where C is the fourth-order symmetric tensor representing the quadratic form
M 7→ Q(U−1

j M).

We conclude this section by stating a useful property of frame indifferent energy
densities.

Lemma 2.2.8. It holds that

W(M) = W
(√

MT M
)

∀ M ∈ R3×3 with det(M) > 0.

Proof. By polar decomposition, every matrix M ∈ R3×3 with det(M) > 0 can
be written as M = R

√
MT M, for some R ∈ SO(3). Then, the result follows by

(FI).
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2.2.2 Results concerning isometries

In this section, we collect some statements regarding isometries. We recall and
refine some results contained in [FJM06, Section 8], allowing us to construct iso-
metric immersions with some prescribed data. Then, we report a density result
for smooth isometric immersions proved in [Hor11], and we show a new density
statement for solutions of the Monge–Ampère equation that is of interest on its
own. In the last part, we state a result from [Fre+16] concerning the costruction of
isometric immersions of thin strips, whose restriction to the mid-line is known.

For the first part of the section, the set S represents the mid-plane of a plate,
thus we assume S ⊂ R2 to be an open, bounded, and connected set with Lipschitz
boundary.

Consider a function v ∈ W2,2(S). We would like to construct an isometric
immersion y ∈ W2,2

iso (S; R3) such that y · e3 = v. This is an important problem in
plate theory and in our Γ-convergence setting, whose solution is crucial to the
construction of recovery sequences. The question can be equivalently rephrased as:
given an out-of-plane displacement v, is there an in-plane displacement u such that
(x′ + u, v) is an isometric immersion of S? In [FJM06, Section 8], the authors show
that a necessary and sufficient condition for the existence of u, or equivalently of
y, is that det((∇′)2v) = 0. For the convenience of the reader, we recall here the
aforementioned result.

Theorem 2.2.9. Suppose that S is simply connected. Let v ∈ W2,2(S) ∩ W1,∞(S) such
that ∥∇′v∥L∞ < 1. Then, there exists u ∈ W2,2(S; R2) such that

y(x′) :=
(

x′

0

)
+

(
u(x′)
v(x′)

)
=:
(

ϕ(x′)
v(x′)

)
is an isometric immersion if and only if det((∇′)2v) = 0. Moreover, if ∥∇′v∥L∞ ≤ 1/2
the function u can be chosen such that

∥(∇′)2u∥L2 ≤ C∥∇′v∥L∞∥(∇′)2v∥L2 , (2.10)

∥u∥W2,2 ≤ C(∥∇′v∥L∞∥(∇′)2v∥L2 + ∥∇′v∥2
L2). (2.11)

The condition det((∇′)2v) = 0 is a nonlinear elliptic PDE known as the Monge–
Ampère equation. We define the set of its strong solutions as

Adet :=
{

v ∈ W2,2(S) : det((∇′)2v) = 0 a.e. in S
}

.

The first result we prove is a slight generalization of Theorem 2.2.9, and it is
concerned with the regularity of u.

Theorem 2.2.10. Suppose that S is simply connected. Let v ∈ W2,∞(S) and suppose that
∥∇′v∥L∞ < 1. Then there is u ∈ W2,∞(S; R2) such that the map

y(x′) =
(

x′

0

)
+

(
u(x′)
v(x′)

)
is an isometric immersion if and only if v ∈ Adet. Moreover, if ∥∇′v∥L∞ ≤ 1/2, the
function u can be chosen such that

∥u∥W2,∞ ≤ C(∥(∇′)2v∥L∞∥∇′v∥L∞ + ∥∇′v∥2
L∞). (2.12)
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Proof. The existence of u ∈ W2,2(S; R2) such that y is an isometric immersion is
proved in Theorem 2.2.9. We are left to show that u ∈ W2,∞(S; R2) and that (2.12)
holds. In order to do so, we need to analyse the construction of u. We borrow the
notation from the proof of Theorem 2.2.9 contained in [FJM06, Section 8]. Let

F :=
√

Id−∇′v ⊗∇′v,

and
hF :=

1
det(F)

FT curl(F).

Then, u is defined as u(x′) := ϕ(x′) − x′, where ϕ ∈ W2,2(S; R2) is such that
∇′ϕ = eiθ F and θ ∈ W1,1(S) has zero mean and satisfies ∇′θ = hF. Here, eiθ stands
for the rotation matrix of angle θ

eiθ :=
(

cos θ − sin θ
sin θ cos θ

)
.

Note that

det(F) =
√

det(Id−∇′v ⊗∇′v) =
√

1 − |∇′v|2 ≥ 1
2

.

It is well-known that the matrix square root is differentiable and Lipschitz on the
set of matrices whose determinant is positive and bounded away from 0. Thus,
F ∈ W1,∞(S; R2×2) and

∥F∥L∞ ≤ C,

∥∇′F∥L∞ ≤ C∥(∇′)2v∥L∞∥∇′v∥L∞ .

It follows that hF ∈ L∞(S; R2) and

∥∇′θ∥L∞ = ∥hF∥L∞ ≤ C∥(∇′)2v∥L∞∥∇′v∥L∞ .

Hence, we have

∥(∇′)2u∥L∞ = ∥(∇′)2ϕ∥L∞ ≤ C(∥∇′θ∥L∞∥F∥L∞ + ∥∇′F∥L∞)

≤ C∥(∇′)2v∥L∞∥∇′v∥L∞ ,

∥∇′u∥L∞ = ∥∇′ϕ − Id ∥L∞ ≤ C∥F − Id ∥L∞ + ∥eiθ − Id ∥L∞

≤ C∥F − Id ∥L∞ + ∥θ∥L∞ ≤ C(∥|∇′v|2∥L∞ + ∥∇′θ∥L∞)

≤ C(∥(∇′)2v∥L∞∥∇′v∥L∞ + ∥∇′v∥2
L∞),

where we have used the Poincaré–Wirtinger inequality on the term ∥θ∥L∞ and a
Taylor expansion of the matrix square root to treat the term F − Id (recall that the
matrix square root has bounded derivative). Since u is defined up to translation,
we conclude by applying the Poincaré–Wirtinger inequality.

Since we are also interested in isometric immersions with a general constant
metric G ∈ R2×2, we would like to suitably extend the previous result. The
datum v—which is the out-of-plane displacement in the Euclidean case—has to be
changed to the displacement along a specific direction, related to the metric G.
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Theorem 2.2.11. Let U ∈ R3×3 be a symmetric and positive definite matrix and let
G := (U2)′. Suppose that S is simply connected. Let v ∈ W2,2(S) be such that

|U−1e3|∥∇′vG−1/2∥L∞ < 1.

Then, there exists ϕ ∈ W2,2(S; R2) such that the map

y(x′) := vU−1e3 + U
(

ϕ
0

)
(2.13)

belongs to W2,2
iso,G(S; R3) if and only if v ∈ Adet. Moreover, if v satisfies the condition

|U−1e3|∥∇′vG−1/2∥L∞ ≤ 1
2

,

then ϕ can be chosen such that u := (U(ϕ − x′, 0))′ satisfies the following estimates:

∥(∇′)2u∥L2 ≤ C∥∇′v∥L∞∥(∇′)2v∥L2 , (2.14)

∥u∥W2,2 ≤ C∥∇′v∥L∞∥(∇′)2v∥L2 + C∥∇′v∥2
L2 . (2.15)

Finally, if v ∈ W2,∞(S), then u ∈ W2,∞(S; R2) and the following inequality holds:

∥u∥W2,∞ ≤ C(∥(∇′)2v∥L∞∥∇′v∥L∞ + ∥∇′v∥2
L∞). (2.16)

Proof. Observe that y of the form (2.13) satisfies ∇′yT∇′y = G if and only if

∇′ϕTG∇′ϕ + |U−1e3|2∇′v ⊗∇′v = G.

Defining ϕ̃ := G1/2ϕ and ṽ := |U−1e3|v the previous equation is equivalent to
solve

(∇′ϕ̃G−1/2)T(∇′ϕ̃G−1/2) + (∇′ṽG−1/2)T ⊗ (∇′ṽG−1/2)T = Id2

for the unknown ϕ̃. Define now v̄ ∈ W2,2(G1/2S; R3) given by v̄(G1/2x′) = ṽ(x′).
Solving the above equation for ϕ̃ is equivalent to solve

(∇′ϕ̄)T∇′ϕ̄ +∇′v̄ ⊗∇′v̄ = Id2,

for ϕ̄ ∈ W1,2(G1/2S; R2). Thus, we can conclude by applying Theorem 2.2.9. Note
that the transformations v ⇝ ṽ ⇝ v̄ preserve the property of being a solution of
the Monge–Ampère equation, namely

det((∇′)2v) = 0 ⇐⇒ det((∇′)2ṽ) = 0 ⇐⇒ det((∇′)2v̄) = 0.

Moreover, they preserve the boundedness of the gradient in the L∞ norm. Finally,
define ū := ϕ̄ − x′. It is easy to show that

∥∇′u∥L2 = C∥∇′ū∥L2 ,

∥u∥W1,2 = C∥ū∥W1,2 ,

∥∇′v∥L∞ = C∥∇′v̄∥L∞ ,

∥(∇′)2v∥L2 = C∥(∇′)2v̄∥L2 .

Estimates (2.14)–(2.15) then follow from (2.10)–(2.11). We are left to prove (2.16).
Note that it is sufficient to do the proof for ū, so we can suppose U = Id. Then, the
result follows from Theorem 2.2.10.
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The latter result allows us to construct isometric immersions of S into R3 for
the flat metric (U2)′, given a suitable displacement along U−1e3 with respect to
the reference deformation x 7→ Ux. Note that U−1e3 is perpendicular to both Ue1
and Ue2.

When constructing recovery sequences, it is sometimes useful to approximate
a Sobolev isometric immersion with a smooth one. We recall here a result proved
by Hornung in [Hor11] giving a sufficient condition to have density of smooth
isometric immersions in the space of Sobolev ones. We introduce a regularity
condition for the boundary of S, that corresponds to condition (∗) in [Hor11].

there is a closed subset Σ ⊂ ∂S with H1(Σ) = 0 such that

the outer unit normal n⃗ to S exists and is continuous on ∂S\Σ.
(2.17)

Theorem 2.2.12 (Hornung [Hor11]). Suppose that S satisfies condition (2.17). Then the
closure of the set

W2,2
iso (S; R3) ∩ C∞(S̄; R3)

in W2,2(S; R3) is W2,2
iso (S; R3).

As a corollary, we state a density result for smooth solutions of the Monge–
Ampère equation in the space of solutions with Sobolev regularity.

Corollary 2.2.13. Suppose that S is simply connected and satisfies (2.17). Then the closure
of

Adet ∩ C∞(S̄)

in W2,2(S) is Adet.

Proof. We need to show that for every v ∈ Adet there is a sequence (vn) ⊂ Adet ∩
C∞(S̄) such that vn → v in W2,2(S). Suppose first that v ∈ Adet ∩ W1,∞(S). Take
λ ∈ R such that ∥∇v∥L∞ < 1/λ and define vλ := λv. Clearly ∥∇vλ∥L∞ < 1. By
Theorem 2.2.9 there is ϕλ ∈ W2,2(S; R2) such that

y(x′) := vλe3 +

(
ϕλ

0

)
satisfies ∇′yT∇′y = Id. By Theorem 2.2.12, there is a sequence of isometric
immersions

(yn) ⊂ W2,2
iso (S; R3) ∩ C∞(S; R3)

such that yn → y in W2,2(S; R3). Defining vn := (1/λ)yn · e3 we have vn → v in
W2,2(S). Moreover, by Theorem 2.2.9, we deduce that vn ∈ Adet ∩ C∞(S̄).

We move now to the general case of v ∈ Adet. By [FJM06, Theorem 10], there
is a sequence vk ∈ Adet ∩ W1,∞(S) such that vk → v in W2,2. Then, by a standard
diagonal argument, we conclude.

We present now a density results in L2 for Sobolev solutions of the Monge–
Ampère equation, which is of interest in its own right. The proof relies on the
well-known Universal Approximation Theorem for Neural Networks (see [Cyb89;
CD89]).
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Theorem 2.2.14. The set spanAdet is dense in L2(S).

Proof. Step 1. Let σ(x) :=
1

1 + e−x . We show that σ is discriminatory, i.e., the only

signed bounded regular Borel measure µ on S̄ such that∫
S̄

σ(yTx + θ) dµ(x) = 0 ∀y ∈ R2, ∀θ ∈ R (2.18)

is µ = 0.
Let µ be such that (2.18) holds. We argue as in [Cyb89, Lemma 1]. Let y ∈ R2,

λ, θ, k ∈ R, and define

σk
λ(x) := σ(λ(yTx + θ) + k).

Let

ϕk(x) :=


1 if yTx + θ > 0,
0 if yTx + θ < 0,
σ(k) if yTx + θ = 0.

Clearly, σk
λ → ϕk pointwise as λ → +∞. Moreover, ∥σk

λ∥C0 ≤ 1 uniformly in λ.
Hence, by (2.18) and dominated convergence

0 =
∫

S̄
σk

λ dµ →
∫

S̄
ϕk dµ = σ(k)µ(Πy,θ) + µ(Hy,θ) ∀ y ∈ R2, ∀ θ, k ∈ R,

(2.19)
where

Πy,θ := {x ∈ S : yTx + θ = 0},

Hy,θ := {x ∈ S : yTx + θ > 0}.

Passing to the limit as k → +∞ in (2.19), we deduce that

µ(Πy,θ) + µ(Hy,θ) = 0 ∀ y ∈ R2, ∀ θ ∈ R.

Similarly, letting k → −∞ we get

µ(Hy,θ) = 0 ∀ y ∈ R2, ∀ θ ∈ R.

Fix y ∈ R2 and define

Fy(h) :=
∫

S̄
h(yTx) dµ(x),

for every bounded Borel function h : R → R. Let θ ∈ R. Then,

Fy(χ[−θ,+∞)) = µ(Πy,θ) + µ(Hy,θ) = 0,

where χ[−θ,+∞) is the indicator function of [−θ,+∞). Similarly, Fy(χ(−θ,+∞)) = 0.
By the linearity of Fy, we deduce that Fy is zero on the indicator function of every
interval. By approximation, Fy(h) = 0 for every continuous and bounded function
h : R → R and for every y ∈ R2. In particular,

µ̂(ξ) =
∫

S̄
e−iξT x dµ(x) =

∫
S̄
(cos(ξTx) + i sin(ξTx)) dµ(x)

= Fξ(cos(x)) + iFξ(sin(x)) = 0,
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where µ̂ is the Fourier’s transform of µ (see also Section 6.2 for a short introduction
of the Fourier’s Transform). Since µ̂ = 0, it follows that µ = 0.

Step 2. Let
Σ :=

{
x 7→ σ(yTx + θ) : θ ∈ R, y ∈ R2

}
.

We show that span Σ is dense in C0(S̄) with respect to the C0 norm. Suppose by
contradiction that R = span Σ ⊊ C0(S̄). Then, by the Hahn–Banach Theorem,
there is L ∈ (C0(S̄))∗ such that L ̸= 0 and L(R) = 0. By the Riesz Representation
Theorem, there is a signed bounded regular Borel measure µ ̸= 0 on S̄ such that

L(h) =
∫

S̄
h dµ ∀ h ∈ C0(S̄).

Since σ is discriminatory by Step 1, we have the desired contradiction.
Step 3. To conclude it is sufficient to show that Σ ⊂ Adet. Let θ ∈ R and y ∈ R2.

We have

∇2
xσ(yTx + θ) = σ′′(yTx + θ)

(
y2

1 y1y2
y1y2 y2

2

)
.

Thus, det(∇2
xσ(yTx + θ)) = 0, concluding the proof.

To conclude the section, we report a result proved in [Fre+16], regarding the con-
struction of isometric immersions of narrow strips. More precisely, the following
Theorem allows us—under suitable hypotheses—to extend a second fundamental
form defined on the mid-line to a narrow strip, in such a way that it is still the
second fundamental form of an isometric immersion. For this last part, S := (0, L),
so that Ωh = (0, L)× (−h/2, h/2).

Theorem 2.2.15. Let ρ > 0 and let p ∈ C1([−ρ, L + ρ]; R2) be such that |p| ≡ 1 and
p · e1 ̸= 0 on [−ρ, L + ρ]. Then, there exists η > 0 and O ⊂ R2 a neighbourhood of
[0, L]× {0} such that the map

Φ : [−ρ, L + ρ]× (−η/2, η/2) → R2, Φ(x1, x2) := x1e1 + x2 p⊥(x1)

is a bi-Lipschitz homeomorphism onto O. In particular, there exists ε > 0, depending
solely on p, such that Ωε ⊂ O.

Consider now y ∈ W2,2(0, L; R3) and d2 ∈ W1,2(0, L; R3) such that, defining
d1 := ∂1y, it holds:

(i) |d1| = |d2| = 1 almost everywhere in (0, L),

(ii) d1 · d2 = ∂1d1 · d2 = 0 almost everywhere in (0, L).

Assume the exists λ ∈ L2(0, L) such that M := λp ⊗ p satisfies

M11 = ∂1d1 · d3,

M12 = ∂1d2 · d3,

where d3 := d1 ∧ d2. For (x1, x2) ∈ Φ−1(Ωε), define u by the relation

u(Φ(x1, x2)) := y(x1) + x2
(
d1(x1) d2(x1)

)
p⊥(x1).

Then,
u ∈ W2,2

iso (Ωε; R3) ∩ W1,∞(Ωε; R3)

and satisfies for almost every x1 ∈ (0, L)
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(a) u(x1, 0) = y(x1),

(b) ∇u(Φ(x1, x2)) = d1(x1)⊗ e1 + d2(x1)⊗ e2,

(c) ∂iju(x1, 0) · ν(x1, 0) = Mij(x1) = λ(x1)pi(x1)pj(x1) for i, j = 1, 2, where
ν := ∂1u ∧ ∂2u.

For a proof, we refer to [Fre+16, Lemma 12 and Proposition 13].

2.2.3 Fine properties of optimal rotations

In this section, we recall some properties of optimal rotations (see Section 2.1 for
their definition), and we further analyse their structure in our specific setting.

The first part is devoted to the projection operator as defined in Section 2.1,
and its results are used in Chapter 3. We show that, under suitable hypotheses, Pj

h
is well-defined, at least for h ≪ 1, along sequences of rotations converging to an
optimal one.

In the second part, we restrict our attention to the single-well case, and we
investigate the consequences of a compatibility condition between f and R that is
important in Chapter 4. In particular, in this case we give an explicit characteriza-
tion of the tangent and normal space to R.

Throughout this section, S represents the mid-plane of a plate, so that S ⊂ R2

is an open, bounded, and connected set with Lipschitz boundary.
For the first part of this section, let ( fh) ⊂ L2(S; R3) be a sequence of loads

such that h−p fh → f in L2(S; R3) for some p > 0. Suppose that for every h > 0∫
S

fh dx′ = 0.

The first Lemma is an easy Γ-convergence result, whose proof is omitted. We recall
that Fh and F are defined as in Section 2.1.

Lemma 2.2.16. The sequence of functionals −h−pFh Γ-converges to −F. In particular,
given a sequence (RhUkh

) such that RhUkh
∈ Mh for every h, up to a subsequence we

have RhUkh
→ RUj ∈ M.

Lemma 2.2.17. Let j ∈ {1, . . . , l}. Suppose that dimRj
h → dimRj. Let (Rh) ⊂ SO(3)

such that Rh ∈ Rj
h for every h and let (Wh) ⊂ R3×3

skew be a sequence such that

(a) RhWh ∈ NRj
h Rh ,

(b) |Wh| = 1 for every h.

Then, up to a subsequence, we have RhWh → RW, where R ∈ Rj, W ∈ R3×3
skew, |W| = 1,

and RW ∈ NRj
R.

Proof. Up to subsequences, we have that Rh → R and Wh → W with R ∈ SO(3),
W ∈ R3×3

skew, and |W| = 1. By Lemma 2.2.16 we have that R ∈ Rj, thus we just

need to prove that RW ∈ NRj
R. Let m := dimRj. By hypothesis, m = dimRj

h for
h ≪ 1. Consider an orthonormal basis

{RhW1
h , . . . , RhWm

h }
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of the tangent space TRj
hRh . Then, up to a subsequence, we have RhWi

h → RWi for
some Wi ∈ R3×3

skew. Clearly the matrices RW1, . . . , RWm are orthonormal. Moreover,
since

0 = h−pFh(Rh(Wi
h)

2Uj) → F(R(Wi)2Uj) ∀ i = 1, . . . , m

it follows that
{RW1Uj, . . . , RWmUj}

is an orthonormal basis of TRj
R.

Consider now a matrix M ∈ R3×3
skew such that RM ∈ TRj

R. Then, we can
write RM = ∑m

i=1 λiRWi for some λ1, . . . , λm ∈ R. Define Mh := ∑m
i=1 λiWi

h. By

construction, we have Rh Mh → RM. Moreover, Rh Mh is tangent to Rj
h at the point

Rh, so that
0 = RhWh : Rh Mh → RW : RM.

Since M is arbitrary, this concludes the proof.

Remark 2.2.18. Lemma 2.2.17 proves also that a sequence of tangent matrices to
Rj

h at a point Rh converges to a tangent matrix to Rj at the point R, where R is the
limit of Rh.

Proposition 2.2.19. Let j ∈ {1, . . . , l}. Suppose that dimRj
h → dimRj. Let

R̃j :=
{

R ∈ Rj : ∃ (Rh) ⊂ SO(3) s.t. Rh ∈ Rj
h for every h > 0 and Rh → R

}
.

Then R̃j = Rj.

Proof. We show that R̃j is the image of TRj
R through the map

TRj
R → SO(3), RW 7→ ReW ,

in a neighbourhood of R. In particular, this proves that R̃j is an embedded
submanifold of Rj and that the tangent spaces coincide, concluding the proof.

Let R ∈ R̃j. There exists a sequence (Rh) ⊂ SO(3) such that Rh ∈ Rj
h for

every h and Rh → R. For h ≪ 1, take an orthonormal basis {RhW1
h , . . . , RhWm

h } of

TRj
hRh , where m := dimRj

h = dimRj. Then RhWi
h → RWi and since

0 =
1
hp Fh(R(Wi

h)
2Uj) → F(R(Wi)2Uj),

the set {RW1, . . . , RWm} is an orthonormal basis of TRj
R. Now pick W ∈ TRj

R. By
the convergence of the basis we can construct a sequence (Wh) ⊂ R3×3

skew such that

Wh → W and RhWh ∈ TRj
h for every h ≪ 1. By (2.4), we have RheWh ∈ Rj

h. Thus,
passing to the limit, we get by Lemma 2.2.16 that ReW ∈ Rj, that is, by definition
ReW ∈ R̃j.

The above results grant the well-posedness of the projection.
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Proposition 2.2.20. Let (Rh) ⊂ SO(3) be a sequence such that Rh → R and R ∈ Rj

for some j ∈ {1, . . . , l}. Suppose that dimRj
h → dimRj. Then Pj

h(Rh) is well-defined
for h ≪ 1.

Proof. It is sufficient to prove that distSO(3)(Rh,Rj
h) → 0. By Proposition 2.2.19,

there exists a sequence of rotations R̃h such that R̃h ∈ Rj
h for every h and R̃h → R.

Since
distSO(3)(Q

′, Q) = |Q′ − Q|+ O(|Q′ − Q|2)

for every Q, Q′ ∈ SO(3), we have

distSO(3)(Rh,Rj
h) ≤ distSO(3)(Rh, R̃h) = |Rh − R̃h|+ O(|Rh − R̃h|2) → 0.

We move now to the second part of the section, and we restrict our attention to
the single-well case (i.e., l := 1, U1 := Id so that KW = SO(3)). We use the reduced
notation R to denote both M and R1.

Consider a non-zero force f ∈ L2(S; R3) and suppose that∫
S

f dx′ = 0.

We start with some result regarding the dimension of R. Firstly, we recall the
characterization contained in [MM21, Proposition 6.2].

Proposition 2.2.21. Let L : SO(3) → R be a linear map and let RL be the set of its
maximizers. Suppose that Id ∈ RL. With a small abuse of notation, let L be the 3 × 3
matrix representing the linear function L. Either we have RL = {Id} or

(i) RL = SO(3), if and only if L = 0,

(ii) RL is isometric to the real projective plane P2(R), if and only if the eigenvalues of
L are a, a, −a for some a > 0,

(iii) RL is a single closed geodesic, if and only if the eigenvalues of L are b, a, −a for
some b > a ≥ 0.

We show that, in our setting, case (ii) is not admissible.

Lemma 2.2.22. The dimension of R is not 2.

Proof. Let R̄ ∈ R. Define

F̃(A) :=
∫

Ω
f · R̄A

(
x′

0

)
dx =

∫
Ω

R̄T f · A
(

x′

0

)
dx.

Similarly, define
R̃ := argmax

R∈SO(3)
F̃(R).

Note that R = R̄ · R̃ so it is enough to prove that dim R̃ ̸= 2. Clearly Id ∈ R̃,
so we can use the classification of Proposition 2.2.21. Since F̃ and F are linear on
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the space of 3 × 3 matrices, we can represent them by 3 × 3 matrices, that we still
denote, with a slight abuse of notation, by F̃ and F. By Proposition 2.2.21, R is
two-dimensional when the eigenvalues of F̃ are of the form a, a,−a for some a > 0.
Note first of all that

F̃ : A = F : R̄A ∀ A ∈ R3×3,

so that F̃ = R̄T F. Moreover,

Fi3 = F : Ei3 = F(Ei3) = 0, i = 1, 2, 3,

where Eij is the matrix such that Eij
km := δkiδmj and δij is the usual Kronecker’s

symbol. It follows that det(F̃) = det(F) = 0 and 0 is an eigenvalue of F̃, concluding
the proof.

In this part of the section, we are mainly interested in the consequences of the
compatibility condition

RT f · e3 = 0 ∀ R ∈ R. (C)

Condition (C) plays an important role in Chapter 4.

Remark 2.2.23. If (C) is in force, then we also have dimR ̸= 3, thus R is either
a singleton or a closed geodesic. However, as showed in [MM21], we can have
non-zero forces for which R = SO(3). As an example consider f := (1 − 3/2|x|)e1
acting on S := B1. Then

F(R) =
∫

B1

f (x) · R
(

x′

0

)
dx′ =

∫ 1

0

∫ 2π

0
r
(

1 − 3
2

r
)

e1 · R

r cos θ
r sin θ

0

 dθ dr = 0.

In particular R = SO(3). In this case, (C) does not hold.

The set of rotations is not linear. However, the 2-dimensional structure of the
integral that defines F gives us the freedom to perform some change of sign to
the columns of a rotation while keeping the sign of its determinant. A few simple
results follow from this observation.

Lemma 2.2.24. If (C) holds, then

max
R∈SO(3)

F(R) > 0.

Otherwise,
max

R∈SO(3)
F(R) ≥ 0.

Proof. Assume (C) and suppose by contradiction that F(R) ≤ 0 for any rotation
R ∈ SO(3). By (C) we have R ̸= SO(3), hence the map F can not vanish on the
whole SO(3). Thus, there is a rotation R such that F(R) < 0. Now consider the
matrix

R̂ :=
(
−R1 −R2 R3) .

Note that R̂ ∈ SO(3) and F(R̂) = −F(R) > 0. This gives the desired contradiction.
The same argument applies to the second part of the statement.
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Differentiating the map t 7→ F(RetW) and evaluating it at t = 0 we obtain

F(RW) = 0, F(RW2) ≤ 0 ∀ R ∈ R, ∀W ∈ R3×3
skew. (2.20)

Consider now R ∈ R and the skew-symmetric matrix

W :=

 0 1 0
−1 0 0
0 0 0

 .

Since F(RW) = 0, we get

∫
S

f · R

x2
0
0

 dx′ =
∫

S
f · R

 0
x1
0

 dx′.

For a given R ∈ R we then define

a(R) :=
∫

S
f · R

x1
0
0

 dx′, (2.21)

b(R) :=
∫

S
f · R

 0
x2
0

 dx′, (2.22)

c(R) :=
∫

S
f · R

 0
x1
0

 dx′ =
∫

S
f · R

x2
0
0

 dx. (2.23)

Note that by Lemma 2.2.24 we have that a(R) + b(R) = F(R) ≥ 0. Moreover, a(R)
and b(R) can not be negative, as proved in the following lemma. In particular,
when (C) holds, a(R) and b(R) cannot be both zero by Lemma 2.2.24.

Lemma 2.2.25. It holds that a(R), b(R) ≥ 0 for any R ∈ R.

Proof. Suppose by contradiction that a(R) < 0 for some R ∈ R. By Lemma 2.2.24
we have b(R) = F(R)− a(R) ≥ 0. Consider the rotation

R̂ :=
(
−R1 R2 −R3) ∈ SO(3).

Then F(R) ≥ F(R̂) = −a(R) + b(R) > a(R) + b(R) = F(R), which gives a
contradiction. A similar proof can be done for b(R).

We can now give an explicit characterization of the tangent space TRR in terms
of the quantities a(R), b(R) and c(R).

Proposition 2.2.26. Assume (C) and suppose that dimR = 1. Let R ∈ R. Then

a(R)b(R)− c2(R) = 0.

Moreover,

TRR =

{
W ∈ R3×3

skew : W12 = 0, W13 = − c(R)
a(R)

W23

}
if a(R) ̸= 0,

TRR =

{
W ∈ R3×3

skew : W12 = 0, W23 = − c(R)
b(R)

W13

}
if b(R) ̸= 0.



46 CHAPTER 2. NOTATION AND MATHEMATICAL PRELIMINARIES

Proof. By definition, the tangent space to R at R is the set of zeros of the map
W ∈ R3×3

skew 7→ F(RW2). For a general skew-symmetric matrix W, we have

(W2)′ = −
(

W2
12 + W2

13 W13W23
W13W23 W2

12 + W2
23

)
.

Hence, by (C) we have

F(RW2) = −(W2
12 + W2

13)a(R)− 2W13W23c(R)− (W2
12 + W2

23)b(R)

This expression can be considered as a quadratic form q : R3 → R computed at
the vector (W12, W13, W23). We can identify q with a symmetric matrix and study
its sign. We have

q = −

a(R) + b(R) 0 0
0 a(R) c(R)
0 c(R) b(R)

 ,

so by Lemma 2.2.24–2.2.25 the sign of q depends solely on the minor a(R)b(R)−
c2(R). If a(R)b(R)− c2(R) > 0, the only zero of q is at 0, contradicting the hy-
pothesis on the dimension of R. If a(R)b(R) − c2(R) < 0, the set of zeros of q
contains two lines that span a subset of dimension 2 in R3, contradicting again the
assumption dimR = 1. Therefore, it must hold that a(R)b(R)− c2(R) = 0. In this
case, we have

q(W) = −W2
12F(R)−

(
W13

√
a(R) + W23

c(R)√
a(R)

)2

if a(R) ̸= 0,

q(W) = −W2
12F(R)−

(
W23

√
b(R) + W13

c(R)√
b(R)

)2

if b(R) ̸= 0,

concluding the characterization of the tangent space by Lemma 2.2.24.

Corollary 2.2.27. Assume (C), suppose that dimR = 1, and let R ∈ R. Then

NRR =

{
W ∈ R3×3

skew : W23 =
c(R)
a(R)

W13

}
if a(R) ̸= 0,

NRR =

{
W ∈ R3×3

skew : W13 =
c(R)
b(R)

W23

}
if b(R) ̸= 0.



3
Γ-convergence of a

singularly perturbed
multi-well energies

3.1 Assumptions and main results

In this chapter, we assume S ⊂ R2 to be an open, bounded, and connected set
with Lipschitz boundary, representing the mid-plane of a plate. The elastic energy
density W is defined on R3×3. Moreover, we assume that

W(M) ≥ C fq(dist(M, K)), M ∈ R3×3, (3.1)

where fq := t2 ∧ tq and q ∈ [0, 2]. This implies in particular the growth condition
(2.8). Note that far from K (see Section 2.1 for the definition of K) the energy
density may even have sublinear growth. We denote with the greek letter α
a scaling exponent in [2,+∞), and we set γ := α/2. We choose p > 1 and
η : (0,+∞) → (0,+∞) such that for some constant C > 0:

(P1) η(h) ≥ Ch
α
3 for every h > 0,

(P2) η(h)hγ(1− 2
p )−1 → 0 as h → 0,

(P3) p > 6/5, if q < 2.

Conditions (P1) and (P3) ensure that the penalty term is strong enough to provide
suitable compactness estimates (see Proposition 3.2.1) whereas condition (P2)
guarantees that the penalty term is negligible at the limit. Note that (P1)–(P3)
are compatible, since for every α ≥ 2 we have 1 − γ(1 − p/2) < α/3 for p large
enough.

The symbol ∇2
hy denotes the rescaled Hessian of y, that is simply ∇h(∇hy). We

set
Wh

2,p(Ω; R3) :=
{

y ∈ W1,2(Ω; R3) : ∇2
hy ∈ Lp(Ω; R3×3×3)

}
,

47
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and we define the α-rescaled energy Eα
h : W1,2(Ω; R3) → R as follows:

Eα
h(y) :=


1
hα

∫
Ω
W(∇hy) dx +

ηp(h)
hα

∫
Ω
|∇2

hy|p dx if y ∈ Wh
2,p(Ω; R3),

+∞ otherwise.

The main objective of this chapter is to extend the rigorous derivation of the
hierarchy of plate models obtained by Friesecke, James, and Müller in [FJM02;
FJM06] for a single-well energy to the perturbed multi-well case. In order to do so,
we need to introduce the limiting models centred at a well Kj.

The Kirchhoff’s regime α = 2

For α = 2, we prove the Γ-convergence of Eα
h to the Kirchhoff’s functional

EK
j (y) :=


1

24

∫
S

Q̄j(∇yT∇ν) dx y ∈ W2,2
iso,Gj

(S; R3),

+∞ otherwise,
(3.2)

where Gj := (U2
j )

′ and ν is the unique vector such that
(
∇′y ν

)
U−1

j ∈ SO(3) a.e.
in S (whose existence is granted by Lemma 3.2.8). The Γ-convergence result is
stated in the following theorem.

Theorem 3.1.1 (Γ-convergence (α = 2)). Suppose that S satisfies (2.17).

(i) For any sequence (yh) ⊂ W1,2(Ω; R3) that satisfies E2
h(yh) ≤ C for every h > 0

there exist y ∈ W2,2(S; R3) and j ∈ {1, . . . , l} such that:

(a) ∇′yT∇′y = (U2
j )

′ or equivalently y ∈ W2,2
iso,Gj

(S; R3),

(b) up to a nonrelabelled subsequence, ∇hyh →
(
∇′y ν

)
in L2(Ω; R3×3),

where ν is the unique vector such that
(
∇′y ν

)
U−1

j ∈ SO(3) a.e.

(ii) For any sequence (yh) ⊂ W1,2(Ω; R3) as in (i) it holds

lim inf
h→0

E2
h(yh) ≥ EK

j (y).

(iii) For any y ∈ W2,2
iso,Gj

(S; R3), there exists a sequence (yh) ⊂ W1,2(Ω; R3) such that
(b) holds true and

lim
h→0

E2
h(yh) = EK

j (y).
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The Von Kármán’s regime α > 2

When α > 2, the limiting models are expressed in terms of u and v, the limits of
the rescaled in-plane and out-of-plane averaged displacements around a well Kj,
called uh and vh, respectively. They are defined as follows:

uh : S → R2 x′ 7→ min
{

h−γ, h2−2γ
}(ωh(x′) · Uje1

ωh(x′) · Uje2

)
, (3.3)

vh : S → R x′ 7→ h1−γωh(x′) · Uje3, (3.4)

where we recall that γ := α/2 and

ωh : S → R3, x′ 7→
∫

I

(
yh − Uj

(
x′

hx3

))
dx3.

Observe that uh and vh are the components of the averaged displacement ωh in
the basis given by {U−i

j ei : i = 1, 2, 3}. This may not look as a natural choice,
since a basis of tangent vectors to the embedded midplane Uj(S × {0}) is given by
{Uje1, Uje2} and the normal direction is given by U−1

j e3. However, since {U−1
j ei :

i = 1, 2, 3} is the dual basis of {Ujei : i = 1, 2, 3}, this alternative simplifies both
the statement and the computations, and gives a completely equivalent result (see
Remark 3.2.12).

When 2 < α < 4, we retrieve the Γ-convergence to the constrained Von
Kármán’s functional, namely,

ECVK
j (v) :=


1
24

∫
S

Q̄j((∇′)2v) dx if v ∈ Alin
iso,j,

+∞ otherwise,

where

Alin
iso,j :=

{
v ∈ W2,2(S) : ∃ u ∈ W1,2(S; R2)

s.t. ∇′uT +∇′u + |U−1
j e3|2∇′v ⊗∇′v = 0

}
.

As in the single-well case, the constraint

∇′uT +∇′u + |U−1
j e3|2∇′v ⊗∇′v = 0 (3.5)

means that u and v satisfy a matching isometry condition up to the second or-
der; however, the metric now depends on the well, and it is not necessarily the
Euclidean one. More precisely, if one defines for ε > 0

yε := Uj

(
x′

0

)
+ εU−1

j e3v + ε2U−1
j

(
u
0

)
,

then (3.5) is equivalent to ∇′yT
ε ∇′yε = (U2

j )
′ + O(ε3). In the literature, yε is called

a geometrically linearized isometry. If S is simply connected, for a given v there
exists u solving (3.5) if and only if v ∈ Adet, as we show in the next proposition.
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Proposition 3.1.2. Assume that S is simply connected. Let v ∈ W2,2(S). There exists
u ∈ W1,2(S; R2) solving equation (3.5) if and only if v ∈ Adet.

Proof. We follow [FJM06, Proposition 9]. Suppose first that Uj := Id and define

g := −1
2
∇′v ⊗∇′v.

With some simple computations it is possible to prove that the relation

∂22g11 + ∂11g22 − 2∂12g12 = det((∇′)2v)

holds in the sense of distributions. If we show that g is the symmetric gradient of a
W1,2 map if and only if

∂22g11 + ∂11g22 − 2∂12g12 = 0, (3.6)

the proof is concluded. Suppose first that g = sym(∇′u) for some u ∈ W1,2(S; R2).
Then, in the sense of distributions,

∂22g11 + ∂11g22 − 2∂12g12 = ∂221u1 + ∂112u2 − ∂12(∂1u2 + ∂2u1) = 0.

Assume now that g satisfies (3.6). We look for u ∈ W1,2(S; R2) such that
∂1u1 = g11,
∂2u2 = g22,
1
2 (∂1u2 + ∂2u1) = g12 = g21.

(3.7)

Note that the last equation can be equivalently rewritten as

∂1u2 = g21 +
1
2

curl(u),

∂2u1 = g12 −
1
2

curl(u).

Thus, solving (3.7) is equivalent to solve∇u =

(
g11 g12 − f

g21 + f g22

)
,

f = 1
2 curl(u),

(3.8)

for u ∈ W1,2(S; R2) and f ∈ L2(S). We show now that the two equation can be
uncoupled. Taking the distributional gradient of the last equation, we get

∇ f =
1
2

(
∂11u2 − ∂12u1
∂21u2 − ∂22u1

)
=

(
∂1g12 − ∂2g11
∂1g22 − ∂2g12

)
. (3.9)

Recall that a vector-valued (or matrix-valued) distribution on a simply connected
set is a distributional gradient if and only if its curl is zero (see also Section 6.5).
Since

curl
(

∂1g12 − ∂2g11
∂1g22 − ∂2g12

)
= ∂22g11 + ∂11g22 − 2∂12g12 = 0,
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equation (3.9) can be solved for f ∈ L2(S). Lastly, since

curl
(

g11 g12 − f
g21 + f g22

)
= 0,

for the same reason the first equation in (3.8) can be solved for u ∈ W1,2(S; R2),
concluding the proof. If Uj ̸= Id, it is sufficient to note that (3.5) can be rewritten as

1
|U−1

j e3|2
(∇′uT +∇′u) +∇′v ⊗∇′v = ∇′ũT +∇′ũ +∇′v ⊗∇′v = 0,

where ũ := |U−1
j e3|−2u.

The case α = 4 corresponds to the Von Kármán’s model, that is,

EVK
j (u, v) :=

1
24

∫
S

Q̄j((∇′)2v) dx

+
1
8

∫
S

Q̄j(∇′uT +∇′u + |U−1
j e3|2∇′v ⊗∇′v) dx,

for v ∈ W2,2(S) and u ∈ W1,2(S; R2).
Lastly, if α > 4, we prove the Γ-convergence to the linearized Von Kármán’s

model

ELVK
j (u, v) :=

1
24

∫
S

Q̄j((∇′)2v) dx +
1
8

∫
S

Q̄j(∇′uT +∇′u) dx,

for v ∈ W2,2(S) and u ∈ W1,2(S; R2). The following theorem summarizes these
Γ-convergence results.

Theorem 3.1.3 (Γ-convergence (α > 2)). Suppose α > 2.

(i) For any sequence (yh) ⊂ W1,2(Ω; R3) that satisfies Eα
h(yh) ≤ C for every h > 0

there exist an index j ∈ {1, . . . , l}, two sequences (R̄h) ⊂ SO(3), (ch) ⊂ R,
and two maps v ∈ W2,2(S), u ∈ W1,2(S; R2) such that, up to a subsequence, the
following convergences hold:

(a) uh ⇀ u in W1,2(S; R2),

(b) vh → v in W1,2(S),

where uh and vh are, respectively, the in-plane and out-of-plane displacements
around the well Kj defined as in (3.3)–(3.4) for the roto-translated deformation

ỹh := R̄T
h yh + ch.

Moreover, if 2 < α < 4, then

∇′uT +∇′u + |U−1
j e3|2∇′v ⊗∇′v = 0.

(ii) For any sequence (yh) ⊂ W1,2(Ω; R3) as in (i)
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(a) if 2 < α < 4, then lim inf
h→0

Eα
h(yh) ≥ ECVK

j (v),

(b) if α = 4, then lim inf
h→0

Eα
h(yh) ≥ EVK

j (u, v),

(c) if α > 4, then lim inf
h→0

Eα
h(yh) ≥ ELVK

j (u, v).

(iii) Suppose that 2 < α < 4 and that S is simply connected and satisfies (2.17). For any
choice of j ∈ {1, . . . , l} and v ∈ Alin

iso,j, there exists a sequence (yh) ⊂ W1,2(Ω; R3)

such that

(a) vh → v in W1,2(S), where vh is defined as in (3.4),
(b) lim

h→0
Eα

h(yh) = ECVK
j (v).

(iv) For any choice of j ∈ {1, . . . , l}, u ∈ W1,2(S; R2), and v ∈ W2,2(S) there exists a
sequence (yh) ⊂ W1,2(Ω; R3) such that, defining uh, vh as in (3.3)–(3.4),

(a) vh → v in W1,2(S),
(b) uh ⇀ u in W1,2(S; R2),
(c) lim

h→0
Eα

h(yh) = EVK
j (u, v) if α = 4,

(d) lim
h→0

Eα
h(yh) = ELVK

j (u, v) if α > 4.

Remark 3.1.4. In the proof of Theorem 3.1.3–(iii) we cannot use the truncation
argument of [FJM02; FJM06]. Indeed, the penalty term in the energy requires
higher regularity. To overcome this issue we suppose that S satisfies (2.17), so that
we can apply the density result by Hornung recalled in Theorem 2.2.12.

Remark 3.1.5. In the single-well case, that is l := 1 and U1 := Id, Theorems 3.1.1
and 3.1.3 hold also for η(h) ≡ 0, namely, without penalty term. Indeed, this is
precisely the setting of [FJM02; FJM06]. Moreover, if instead of rescaling by hα we
do it by a generic infinitesimal sequence Dh → 0, we obtain the same hierarchy of
Γ-limits, depending on the asymptotic behaviour of Dh/h2 and Dh/h4.

Convergence of minimizers in the presence of dead loads

External forces can be included in the previous analysis. For this part, we assume
q > 1, excluding sublinear and linear growth of W at infinity, and we study the
convergence of minimizers of the rescaled total energy

Jα
h : W1,2(Ω; R3) → R ∪ {+∞}, Jα

h (yh) := Eα
h(yh)−

1
hα

∫
Ω

fh · yh dx,

where fh : S → R3 is a sequence of dead loads that satisfies

1
hγ+1 fh → f in Lq′(S; R3). (3.10)

Here q′ is the conjugate exponent of q. Note that q′ ≥ 2, so that the strong
convergence of the forces holds also in L2(S; R3). We assume the forces to be
mean-free, i.e., ∫

S
fh dx′ = 0, (3.11)

otherwise the infimum of Jα
h is −∞. We prove the following result.
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Theorem 3.1.6. Suppose that S satisfies (2.17) and q > 1. Let (yh) ⊂ W1,2(Ω; R3) be a
sequence of deformations that are quasi-minimizers for J2

h , i.e.,

lim sup
h→0

(J2
h(yh)− inf J2

h) = 0.

Then, E2
h(yh) ≤ C for every h > 0 and there exist j ∈ {1, . . . , l} and y ∈ W2,2

iso,Gj
(S; R3)

such that, up to subsequences, yh → y in W1,2(Ω; R3) and (j, y) minimizes

JK
j (y) := EK

j (y)−
∫

S
f · y dx,

over the set

{(j, y) ∈ {1, . . . , l} × W2,2(S; R3) : ∇′yT∇′y = (U2
j )

′}.

For the case α > 2, optimal rotations play an important role (see Section 2.1 for
the definition of optimal rotations and the related notation). We assume that the
forces fh are such that

(F1) Λh = Λ for h ≪ 1,

(F2) dimRj
h → dimRj for any j ∈ Λ.

Note that in general one only has Λh ⊆ Λ and lim suph→0 dim Rj
h ≤ dim Rj

h, as
shown in the following example. The failure of (F1)–(F2) may happen, for instance,
when the direction along which the force acts is slightly perturbed.

Example 3.1.7. Let α > 2 and set S := (−1/2, 1/2)2. Suppose that l := 2 and let

U1 := Id, U2 :=

1 0 0
0 2 0
0 0 1

 .

We consider the following sequence of forces

fh(x′) := hγ+1[x1e3 + hx2e2].

Note that the sequence fh is mean-free by symmetry. Then, with some simple
computation one has that

Fh(RU1) =
hγ+1

12
(R31 + hR22),

Fh(RU2) =
hγ+1

12
(R31 + 2hR22).

It follows that R1
h = R2

h are singletons given by the matrix0 0 1
0 1 0
1 0 0

 ,
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and that Λh = {2}. The limit force f is given by f (x′) = x1e3. Hence,

F(RU1) = F(RU2) =
1

12
R31,

Thus,
R1 = R2 = {R ∈ SO(3) : R31 = 1},

and dimR1 = dimR2 = 1. Moreover, Λ = {1, 2}.

Under the assumptions (F1)–(F2), the following result holds.

Theorem 3.1.8. Let α > 2 and q > 1. Assume (F1)–(F2). Suppose that (yh) ⊂
W1,2(Ω; R3) is a sequence of deformations that are quasi-minimizers for Jα

h , i.e.,

lim sup
h→0

(Jα
h (yh)− inf Jα

h ) = 0.

Then, Eα
h(yh) ≤ C and there exist (R̄h) ⊂ SO(3), (ch) ⊂ R, u ∈ W1,2(S; R2), v ∈

W2,2(S), and j ∈ {1, . . . , l} such that j ∈ Λ and, up to subsequences,

(i) R̄h → R̄ with R̄Uj ∈ M,

(ii) uh ⇀ u in W1,2(Ω; R2),

(iii) vh → v in W1,2(Ω),

where uh, vh are defined as in (3.3)–(3.4) for ỹh := R̄T
h yh + ch. In addition, there is

W ∈ R3×3
skew such that |W| = 1, R̄W ∈ NRj

R̄, and

h
1
2 (1−γ)(R̄h − Pj

h(R̄h)) → βR̄W,

for some β ≥ 0. Lastly,

(a) if 2 < α < 4 and S is a simply connected set that satisfies (2.17), then (j, v, R̄, βW)
minimizes the functional

JCVK
j (v, R, W) := ECVK

j (v)−
∫

S
f · RU−1

j e3v dx − F(RW2Uj)

over all the admissible quadruplets (j, v, R, W), that is, j ∈ Λ and (v, R, W) ∈
Alin

iso,j ×Rj × R3×3
skew such that W ∈ NRj

R,

(b) if α = 4, then (j, u, v, R̄, βW) minimizes the functional

JVK
j (u, v, R, W) := EVK

j (u, v)−
∫

S
f · RU−1

j e3v dx − F(RW2Uj)

over all the admissible quintuplet (j, u, v, R, W), that is, j ∈ Λ and (u, v, R, W) ∈
W1,2(S; R2)× W2,2(S)×Rj × R3×3

skew such that W ∈ NRj
R,

(c) if α > 4, then (j, u, v, R̄, βW) minimizes the functional

JLVK
j (u, v, R, W) := ELVK

j (u, v)−
∫

S
f · RU−1

j e3v dx − F(RW2Uj)

over all the admissible quintuplets (j, u, v, R, W), that is, j ∈ Λ and (u, v, R, W) ∈
W1,2(S; R2)× W2,2(S)×Rj × R3×3

skew such that W ∈ NRj
R.



3.1 ASSUMPTIONS AND MAIN RESULTS 55

Remark 3.1.9. Given that the scaling of the forces is of order hγ+1, we expect the
action of the load on the in-plane displacement to be negligible. This is indeed the
case and the limiting forcing term acts only on the out-of-plane displacement. The
additional term F(RW2Uj) can be interpreted (see also [MM21]) as an elastic cost
of fluctuations of the reference configuration from the optimal rotations.

From a minimization point of view, since the term F(RW2Uj) is always non-
positive (see Section 2.2.3), it is clear that the optimal choice is W = 0. In particular,
in Theorem 3.1.8 we actually have β = 0. Similarly, since for every A ∈ R2×2

skew and
for every j = 1, . . . , l we have

ELVK
j (Ax′, v) < ELVK

j (u, v) ∀ u ∈ W1,2(S; R2) s.t. sym(∇u) ̸= 0,

in Theorem 3.1.8–(c) we infer u = Ax′ for some A ∈ R2×2
skew.

Before moving to the proofs of our results, we provide an example of rank-
one connected double-well structure for which different applied forces result in
different preferred reference configurations.

Example 3.1.10. Let S := (− 1
2 , 1

2 )
2 and consider

U1 :=

4 0 0
0 1 0
0 0 1

 , U2 :=

2 0 1
0 1 0
1 0 1

 .

For a, b, c ≥ 0, consider the sequences of loads

fh(x′) := hγ+1(ax1e1 + bx2e2 + cx1e3).

The limit force f (x′) = ax1e1 + bx2e2 + cx1e3 is pulling the mid-plane S along
fibres parallel to e1 and e2, while twisting it in the out-of-plane direction. With
some simple computation we get

F(RU1) =
1

12
(4aR11 + bR22 + cR31),

F(RU2) =
1

12
[a(2R11 + R13) + bR22 + c(2R31 + R33)].

Note that, if a = 0 and b, c > 0 (i.e., f is pulling the mid-plane S in the e2 direction
only), then one has that

F(RU1) ≤
1
12

(b + c) < F(R̄U2), ∀ R ∈ SO(3),

where

R̄ =

−
√

2
2 0

√
2

2
0 1 0√

2
2 0

√
2

2

 .

In particular, Λ = {2} and the only admissible well at the limit is SO(3)U2.
However, if a > 0 and b = c = 0, that is f is tensing S along e1 without twisting
the mid-plane, we have

F(RU2) =
a

12
(2R11 + R13) ≤

a
4
<

a
3
= F(U1), ∀ R ∈ SO(3).

Thus, Λ = {1} and the only admissible reference configuration is SO(3)U1.
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3.2 Compactness estimates

In order to study the Γ-convergence of the functionals Eα
h we first need to establish

compactness for sequences of deformations that have bounded rescaled energy. It
is clear that the elastic part of the rescaled energy forces the rescaled deformation
gradient to approach in the limit the union of the wells K. However, we would
like to prove that the rescaled gradients are actually getting closer to a single well
Ki. This is precisely ensured by the penalty term. In the following result, inspired
by [Ali+18], we give a precise meaning to this statement.

Proposition 3.2.1. Let α ≥ 2. Let (yh) ⊂ W1,2(Ω; R3) be a sequence such that

lim
h→0

hαEα
h(yh) = 0. (3.12)

Then for h ≪ 1 there are an index ih ∈ {1, . . . , l} and two constants δ, C(δ) > 0 such
that ∫

Ωh,ih
dist2(∇hyh, Kih) dx ≤ C(δ)hαEα

h(yh), (3.13)∫
Ω\Ωh,ih

dist2(∇hyh, Kih) dx ≤ C(δ)hα[(Eα
h(yh))

θ + Eα
h(yh)], (3.14)

where Ωh,ih := {x ∈ Ω : dist(∇hyh(x), Kih) ≤ δ} and

θ :=

{
3/2 if q = 2,
5/3 otherwise.

For the convenience of the reader, we give a self-contained proof following the
same arguments used in [Ali+18, Theorem 2.3]. We start with two preliminary
Lemmas, the proofs of which can be found in [Ali+18, Lemmas 2.5 and 2.6].

Define, for A ∈ R3×3,

W̃(A) := fq(dist(A, K)),

where we recall that fq(t) := t2 ∧ tq. Let

dW̃ (A, B) := inf

{ ∫ 1

0
(W̃(ξ(s)))

m1
m2 p |ξ ′(s)| ds : ξ ∈ C1([0, 1]; Rd×d)

s.t. ξ(0) = A, ξ(1) = B

}
,

where m1, m2 > 1 are such that 1/m1 + 1/m2 = 1.

Lemma 3.2.2. Let δ > 0 and i ∈ {0, . . . , l}. There exists C > 0, depending on δ, such
that

dist(F, Ki) ≤ CdW̃ (F, Ki) ∀ F ∈ R3×3 s.t. dW̃ (F, Ki) ≥ δ.

Lemma 3.2.3. Let δ > 0 and i ∈ {0, . . . , l}. There exists a constant C > 0, depending
on δ, such that

dist(F, Ki) ≤ C ∀ F ∈ R3×3 s.t. dW̃ (F, Ki) < δ.
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Proof of Proposition 3.2.1. Fix δ < 1 ∧ mini ̸=j
{

dist(Ki, K j)/2
}

and define

Ωh := {x ∈ Ω : dist(∇hyh(x), K) ≤ δ} =
l⋃

i=1

Ωh,i,

where
Ωh,i := {x ∈ Ω : dist(∇hyh(x), Ki) ≤ δ}.

Note that, by (3.1), condition (3.13) holds with any j ∈ {1, . . . , l} in place of ih. By
(3.12) and (3.1) we have that

|Ω\Ωh| = 1
fq(δ)

∫
Ω\Ωh

fq(δ) dx ≤ C(δ)
∫

Ω\Ωh
fq(dist(∇hyh, K)) dx (3.15)

≤ C(δ)hαEh(yh) → 0.

Hence, there exists ih ∈ {1, . . . , l} such that |Ωh,ih | ≥ C(δ). We define

gh(x) := (dW̃ (∇hyh(x), Kih)− δ̃) ∨ 0,

where δ̃ := δ
2 m1

m2 p +1. For x ∈ Ωh,ih let Ux ∈ Kih be such that

|∇hyh(x)− Ux| ≤ δ.

Let
ξx(t) := (1 − t)∇hyh(x) + tUx.

Recall that A 7→ dist(A, K) is 1-Lipschitz and fq is monotonically increasing. Thus

W̃(ξx(t)) = fq(dist(ξx(t), K)) ≤ fq(|(1 − t)∇hyh(x)− (1 − t)Ux|) ≤ fq(δ) = δ2.

We deduce that

dW̃ (∇hyh(x), Kih) ≤
∫ 1

0
(W̃(ξx(t)))

m1
m2 p |∇hyh(x)− Ux| dt ≤ δ

2 m1
m2 p +1

= δ̃.

In particular, gh ≡ 0 on Ωh,ih . Set β := p/m1 and choose m1 in such a way that
β < 3. We prove that gh ∈ W1,β(Ω) and∫

Ω
|∇gh|β dx ≤

∫
Ω
(W̃(∇hyh))

1
m2 |∇(∇hyh)|β dx. (3.16)

In order to do so, we proceed by approximation. Firstly, note that dW̃ (·, Kih) is
locally Lipschitz. Indeed, since the triangular inequality holds for dW̃ , we have

|dW̃ (A, Kih)− dW̃ (B, Kih)| ≤ dW̃ (A, B) ≤
∫ 1

0
W̃(tA + (1 − t)B)

m1
m2 p |A − B| dt.

Thus, it is sufficient to estimate∫ 1

0
W̃(tA + (1 − t)B)

m1
m2 p dt =

∫ 1

0
fq(dist(tA + (1 − t)B, K))

m1
m2 p dt,
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when A, B belongs to a ball of radius R. Let U0 ∈ K be such that dist(0, K) = |U0|.
Then, since dist(·, K) is 1-Lipschitz and fq is monotonically increasing∫ 1

0
fq(dist(tA + (1 − t)B, K))

m1
m2 p dt ≤

∫ 1

0
fq(|t(A − B) + B − U0|)

m1
m2 p dt

≤ fq(|A|+ 2|B|+ dist(0, K))
m1

m2 p ≤ C(R).

Define
gn

h := (dW̃ (ζn, Kih)− δ̃) ∨ 0,

with
ζn := −n ∨ (n ∧∇hyh(x)),

where both ∨ and ∧ are intended entrywise. Since dW̃ is locally lipschitz, and ζn
is bounded, we deduce that gn

h ∈ L∞(Ω). By classical results on composition of
Lipschitz and Sobolev functions (see, for example, [Zie89, Theorem 2.1.11]), we
deduce that gn

h ∈ W1,∞(Ω) and the chain rule applies. In particular,

|∇gn
h | ≤ |∇dW̃ (ζn, Kih)||∇ζn|.

For any B ∈ R3×3 with unitary norm, we have

|dW̃ (A, Kih)− dW̃ (A + εB, Kih)| ≤ dW̃ (A, A + εB) ≤
∫ 1

0
W̃(A + tεB)

m1
m2 p |εB| dt.

Dividing by ε and passing to the limit as ε → 0, we deduce

|∇dW̃ (A, Kih)| ≤ W̃(A)
m1

m2 p .

Thus, we can estimate

|∇dW̃ (ζn, Kih)| ≤ CW̃(ζn)
m1

m2 p .

We show now that, at least for n ≫ 1,

W̃(ζn) ≤ CW̃(∇hyh). (3.17)

Indeed, (3.17) is obvious if ζn = ∇hyh. If this is not the case, then |∇hyh| ≥ |ζn|,
and for n ≫ 1,

dist(ζn, K) ≤ dist(0, K) + |ζn| ≤ dist(0, K) + |∇hyh|
≤ dist(0, K) + max{|U| : U ∈ K}+ dist(∇hyh, K) ≤ 2 dist(∇hyh, K).

Since fq is monotonically increasing, (3.17) follows. Thus,

|∇gn
h | ≤ CW̃(ζn)

m1
m2 p |∇∇hyh| ≤ CW̃(∇hyh)

m1
m2 p |∇2

hyh|,

so that by Young’s inequality and (3.1)

|∇gn
h |

β ≤ CW̃(∇hyh)
1
m |∇2

hyh|
p

m1 ≤ W̃(∇hyh) + |∇2
hyh|p ≤ W(∇hyh) + |∇2

hyh|p.
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Hence, ∇gn
h is uniformly bounded in Lβ(Ω, R3). Note that, for n ≫ 1, we have

gn
h ≡ 0 on Ωh,ih . By Theorem 2.2.1, we get that gn

h is uniformly bounded in W1,β(Ω).
Thus, up to subsequences, gn

h ⇀ g̃h in W1,β(Ω). Since gn
h → gh poinwise, we have

g̃h = gh. Estimate (3.16) follows by lower semicontinuity.
Applying the Sobolev’s Embedding Theorem, Theorem 2.2.1, and the Young’s

inequality, we deduce that

∫
Ω
|gh|β

∗
dx ≤ C(δ)

(∫
Ω
|∇gh|β dx

) β∗
β

≤ C(δ)
(∫

Ω
(W̃(∇hyh))

1
m2 |∇(∇hyh)|β dx

) β∗
β

≤ C(δ)
hα

β∗
β

η(h)β∗
Eα

h(yh)
β∗
β ,

(3.18)

where β∗ := 3β/(3 − β) is the critical Sobolev exponent in dimension 3. Note
that here we used the crucial information that |Ωh,ih | ≥ C(δ) to deduce that the
constant in the Poincaré’s inequality can be chosen independently of h. Let

Ω̃h,i :=
{

x ∈ Ω : dW̃ (∇hyh, Ki) ≤ 2δ̃
}

.

By Lemma 3.2.3, we can refine the choice of δ in such a way that

Ω̃h,ih\Ωh,ih ⊂ Ω\Ωh ⊂ Ω\Ωh,ih .

Moreover, by Lemmas 3.2.2 and 3.2.3 we have that

dist(∇hyh, Kih) ≤ C(δ)gh on Ω \ Ω̃h,ih ,

dist(∇hyh, Kih) ≤ C(δ) on Ω̃h,ih \ Ωh,ih .

Thus, writing Ω \ Ωh,ih as (Ω \ Ω̃h,ih) ∪ (Ω̃h,ih \ Ωh,ih) we deduce from (3.15) and
(3.18) that∫

Ω\Ωh,ih
distβ∗(∇hyh, Kih) dx ≤ C(δ)

∫
Ω\Ω̃h,ih

|gh|β
∗

dx + C(δ)|Ω̃h,ih \ Ωh,ih |

≤ C(δ)

(
hα

β∗
β

η(h)β∗
Eα

h(yh)
β∗
β + hαEα

h(yh)

)
.

(3.19)

If q ̸= 2, we choose l := 5p/6. Note that m1 > 1 by (P3). Then β = 6/5, β∗ = 2,
and β∗/β = 5/3 = θ. By (P1) and (3.19) we get (3.14).

If q = 2, we choose m1 := p, so that β = 1, β∗ = 3/2 and β∗/β = θ = 3/2. Fix
a constant M > 0 such that K ⊂ BM(0) and define

BM
h := {x ∈ Ω : |∇hyh(x)| ≤ M}.

Writing Ω\Ωh,ih as ((Ω\Ωh,ih) ∩ BM
h ) ∪ ((Ω\Ωh,ih)\BM

h ), by (3.1) we deduce that∫
Ω\Ωh,ih

dist2(∇hyh, Kih) dx ≤ C(δ)
∫
(Ω\Ωh,ih )∩BM

h

dist
3
2 (∇hyh, Kih) dx

+ C(δ)
∫
(Ω\Ωh,ih )\BM

h

W(∇hyh) dx.
(3.20)
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Then, (3.14) follows by (P1) and (3.19)–(3.20).

Remark 3.2.4. At a first glance, it might seem that the hypothesis (3.12) of Pro-
position 3.2.1 does not depend on α, while the thesis (3.14) does. However, (P1)
prescribes a dependence on α of the penalty term coefficient η(h). This is particu-
larly clear examining the proof above.

Corollary 3.2.5. Let α ≥ 2. Let (yh) ⊂ W1,2(Ω; R3) be a sequence such that

lim
h→0

hαEα
h(yh) = 0.

Then for h ≪ 1 there are an index ih ∈ {1, . . . , l} and a constant C > 0 such that∫
Ω

dist2(∇hyh, Kih) dx ≤ ChαEα
h(yh).

The following is a variant of the well-known rigidity estimate by Friesecke,
James, and Müller (see [FJM02; FJM06]), where the well SO(3) is replaced by
K j = SO(3)Uj (see Section 2.1 for the definition of K j).

Proposition 3.2.6. Let (yh) ⊂ W1,2(Ω; R3) and let j ∈ {1, . . . , l}. Define

Dh,j := ∥dist(∇hyh, K j)∥L2(Ω).

There are two maps Rh ∈ L∞(S; SO(3)) and R̃h ∈ W1,2(S; R3×3) ∩ L∞(S; R3×3) such
that

(R1) ∥∇hyh − RhUj∥L2(Ω) ≤ CDh,j,

(R2) ∥∇′R̃h∥L2(S) ≤ Ch−1Dh,j,

(R3) ∥R̃h − Rh∥L2(S) ≤ CDh,j,

(R4) ∥R̃h − Rh∥L∞(S) ≤ Ch−1Dh,j.

Moreover, there exists a constant rotation Qh ∈ SO(3) such that

∥Rh − Qh∥L2(S) ≤ Ch−1Dh,j.

Finally, if h−1Dh,j → 0, then for h ≪ 1 we can choose R̃h = Rh.

To prove this result it is enough to follow the same approach of [FJM06]. Indeed,
the rigidity estimate [FJM06, Theorem 5] holds also for a well of the form SO(3)Uj
by a change of variable. Then, all the estimates in [FJM06, Theorem 6] can be
carried out in the same fashion.

Remark 3.2.7. If r > 1, all the results of Proposition 3.2.6 hold with the L2 norm
replaced by the Lr norm and the factor h−1 replaced by h−2/r
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3.2.1 Compactness in the Kirchhoff’s regime

In the case α = 2 the Γ-limit is written in terms of the deformation gradient. In
this section we show compactness for sequences of rescaled gradients and give a
characterization of their limit. Firstly, we need an explicit expression of the vector
ν that appears in (3.2).

Lemma 3.2.8. Let U be a symmetric and positive definite matrix. Let y ∈ W2,2(S; R3) be
such that ∇′yT∇′y = (U2)′. Then there exists a unique function ν ∈ W1,2(S; R3) such
that (

∇′y ν
)

U−1 ∈ SO(3) a.e. in S.

In particular, ν is given by

ν =
1

|U−1e3|2

[
det(U−1)(∂1y ∧ ∂2y)−

2

∑
k=1

(U−1ek · U−1e3)∂ky

]
.

Proof. For the existence, it is enough to prove that
(
∇′y ν

)T (∇′y ν
)
= U2 and

det
(
∇′y ν

)
> 0. By the hypothesis on y we need to prove that

(i) ∂1y · ν = (U2)13,

(ii) ∂2y · ν = (U2)23,

(iii) ν · ν = (U2)33.

For j = 1, 2 we have

∂jy · ν = − 1
|U−1e3|2

3

∑
k=1

(U−1ek · U−1e3)(U2)jk + (U2)j3 = (U2)j3.

To complete the proof we observe that

|Ue1 ∧ Ue2|2 = |Ue1|2|Ue2|2 − (Ue1 · Ue2)
2 = |∂1y ∧ ∂2y|2

and, since Ue1 ∧ Ue2 = cof(U)e3

|Ue1 ∧ Ue2|2 = |det(U)U−1e3|2 = det2(U)|U−1e3|2.

We are now ready to conclude:

ν · ν =
1

|U−1e3|2
+

(U−1e1 · U−1e3)

|U−1e3|4
3

∑
k=1

(U−1ek · U−1e3)(U2)1k

+
(U−1e2 · U−1e3)

|U−1e3|4
3

∑
k=1

(U−1ek · U−1e3)(U2)2k

− 1
|U−1e3|2

3

∑
k=1

(U−1ek · U−1e3)(U2)3k + (U2)33

=
1

|U−1e3|2
− 1

|U−1e3|2
+ (U2)33 = (U2)33.
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To show that det
(
∇′y ν

)
> 0, it is sufficient to note that

(
∇′y ν

)
=
(
∂1y ∂2y ∂1y ∧ ∂2y

)
1 0 − 1

|U−1e3|2
(U−1e1 · U−1e3)

0 1 − 1
|U−1e3|2

(U−1e2 · U−1e3)

0 0 det(U−1)
|U−1e3|2

 ,

and that the determinant of both matrices in the right-hand side is positive.
To prove uniqueness we observe that, for any choice of two different rotations

R1, R2 ∈ SO(3), we have rank(R1 − R2) ̸= 1. Indeed, given a vector v ∈ R3 we
have

(R1 − R2)v = 0 ⇐⇒ R1v = R2v ⇐⇒ RT
2 R1v = v.

Since RT
2 R1 ∈ SO(3) and RT

2 R1 ̸= Id, we deduce that v ∈ ker(R1 − R2) if and only
if v is parallel to the rotation axis, that is, v belongs to a 1-dimensional subspace.
In particular, rank(R1 − R2) = 2. Suppose now that there is another vector ν̃ such
that (

∇′y ν̃
)

U−1 ∈ SO(3) a.e..

Then, (
0 ν − ν̃

)
U−1 = (ν − ν̃)⊗ U−1e3

coincides almost everywhere with the difference of two rotations and has rank 1
whenever ν ̸= ν̃. Thus, ν = ν̃ almost everywhere.

We move now to the proof of the first part of Theorem 3.1.1.

Proof of Theorem 3.1.1–(i). By Corollary 3.2.5 there is a sequence of indices ih ∈
{1, . . . , l} such that

∥dist(∇hyh, Kih)∥L2 ≤ Ch.

Upon a further subsequence, since ih takes values in a finite set, we can sup-
pose ih to be constant and equal to j. Construct the sequences Rh and R̃h as
in Proposition 3.2.6. Clearly, R̃h is bounded in W1,2(S; R3×3) thus it converges
weakly, at least along a subsequence, to a map R ∈ W1,2(S; R3×3). Hence, we have
Rh → R in L2(S; SO(3)), so R takes values in the set of rotations. Consequently,
∇hyhU−1

j → R in L2(S; R3×3). By an application of the Poincaré–Wirtinger in-
equality we have

∥yh − ch∥W1,2 ≤ C∥∇hyh∥L2 ≤ C,

where

ch :=
1
|Ω|

∫
Ω

yh(x) dx.

Thus, yh − ch converges weakly (possibly along a subsequence) to some map
y ∈ W1,2(Ω; R3). Since h−1∂3yh is bounded in L2(Ω; R3), we have ∂3y = 0 and
y ∈ W1,2(S; R3). Hence, ∇′y = (RUj)

1,2, y ∈ W2,2(S; R3) and ∇′
hyh → ∇′y. Lastly,

since ν is uniquely determined by the condition
(
∇′y ν

)
U−1

j ∈ SO(3) almost
everywhere, the remaining part follows from Lemma 3.2.8.
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Corollary 3.2.9. In the same setting of Theorem 3.1.1, there is a sequence (Rh) ⊂
L∞(S; SO(3)) such that, up to a subsequence

Gh := h−1
(

RT
h ∇hyh − Uj

)
⇀ G in L2(Ω; R3×3). (3.21)

Moreover, G1,2 is affine in x3, that is

G1,2(x′, x3) = Ga(x′) + x3Gb(x′).

Lastly,
(UjGb)

′ = ∇′yT∇′ν. (3.22)

Proof. Arguing as in the proof of Theorem 3.1.1–(i) we have

∥dist(∇hyh, K j)∥L2 ≤ Ch,

for some j ∈ {1, . . . , l}. Let Rh ∈ L∞(S; SO(3)) be the map given by Proposi-
tion 3.2.6. Convergence (3.21) follows from (R1). Moreover, arguing again as in
the proof of Theorem 3.1.1–(i) we deduce that, up to subsequences, Rh → R ∈
L2(S; SO(3)) and ∇hyhU−1

j →
(
∇′y ν

)
U−1

j = R in L2(Ω; R2×2), where ν is
given by Lemma 3.2.8. Define

Hs
h(x′, x3) :=

1
s
(Gh(x′, x3 + s)− Gh(x′, x3)),

for s such that x3 + s ∈ I. For α = 1, 2, 3 and β = 1, 2 we have

(Rh(x′)Hs
h(x′, x3))αβ =

1
s

h−1

(
∂yh,α

∂xβ
(x′, x3 + s)−

∂yh,α

∂xβ
(x′, x3)

)

=
1
s

∂

∂xβ

∫ s

0

1
h

∂yh,α

∂x3
(x′, x3 + σ) dσ.

The right-hand side converges strongly in (W1,2
0 (Ω))∗ to (∇′ν)αβ as h → 0. Indeed,

one has that ∥∂ig∥(W1,2
0 )∗

≤ ∥g∥L2 for every g ∈ L2(Ω), where ∥ · ∥
(W1,2

0 )∗
is the

standard operatorial norm. The left-hand side converges weakly in L2(Ω) to

(
(
∇′y ν

)
U−1

j Hs(x′, x3))
αβ

,

where
Hs(x′, x3)αβ :=

1
s
(G(x′, x3 + s)αβ − G(x′, x3)αβ).

Since L2(Ω) is continuously embedded in (W1,2
0 (Ω))∗ we obtain

Hs(x′, x3)αβ = (U−1
j
(
∇′y ν

)T ∇′ν)
αβ

∀ α = 1, 2, 3, ∀ β = 1, 2.

In particular, the first two columns of Hs are independent of x3 and so the first two
columns of G are affine in x3. Finally, we have

(UjGb)
′ = (

(
∇′y ν

)T ∇′ν)1,2 = ∇′yT∇′ν,

that proves (3.22).
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3.2.2 Compactness in the Von Kármán’s regime

In the case α > 2 we write the Γ-limit as a function of the in-plane and out-of-plane
displacements. The next results give the correct scaling to extract their convergence.
We start with a preliminary Lemma.

Lemma 3.2.10. Let (Mh) ⊂ R3×3 be a sequence such that |Mh − Id | ≤ Chβ for
some β > 0. Then there is a sequence (Ph) ⊂ SO(3) such that skew(Ph Mh) = 0 and
|Ph − Id | ≤ Chβ.

Proof. For h ≪ 1 the matrix Mh is invertible with positive determinant and so
its polar decomposition Mh = Rh Ah is uniquely determined providing a matrix
Ph ∈ SO(3) (i.e., Ph = RT

h ) such that Ph Mh is symmetric. We have that

|Mh − Rh| ≤ |Mh − X| ∀ X ∈ O(3). (3.23)

Indeed, since Mh = Rh Ah, one has

|Mh − Rh|2 = Tr((Mh − Rh)
T(Mh − Rh)) = |Mh|2 − 2 Tr(Ah) + 3,

and similarly
|Mh − X|2 = |Mh|2 − 2 Tr(MT

h X) + 3.

Since Ah is symmetric and positive definite we can write Ah = OhΣhOT
h for some

Oh ∈ O(3) and Σh := diag(σh), with σh,i > 0. Thus, since the trace is invariant
under circular shifts

|Mh − Rh|2 − |Mh − X|2 = 2 Tr(MT
h X − Ah) = 2 Tr(OhΣhOT

h RT
h X − OhΣhOT

h )

= 2 Tr(ΣhOT
h RT

h XOh − Σh) = 2 Tr(ΣhYh − Σh)

= 2
3

∑
i=1

σh,i((Yh)ii − 1) ≤ 0,

where Yh := OT
h RT

h XOh ∈ O(3). Hence, by (3.23),

|Ph − Id | = |Rh − Id | ≤ |Rh − Mh|+ |Mh − Id | ≤ Chβ.

Proposition 3.2.11. Let (yh) ⊂ W1,2(Ω; R3) be a sequence of deformations such that

lim sup
h→0

Eα
h(yh) ≤ C,

where α > 2. Then, for h ≪ 1 there are an index j ∈ {1, . . . , l}, rotations R̄h ∈ SO(3),
and vectors ch ∈ R such that, setting ỹh as follows

ỹh := R̄T
h yh + ch,

there exist R̃h ∈ W1,2(S, SO(3)) that satisfies:

∥∇hỹh − R̃hUj∥L2(Ω) ≤ Chγ, (3.24)

∥R̃h − Id ∥L2(S) ≤ Chγ−1, (3.25)

∥∇′R̃h∥L2(S) ≤ Chγ−1. (3.26)
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Moreover, there exists A ∈ W1,2(S, R3×3
skew) such that the following convergences hold

true, possibly along a nonrelabelled subsequence:

Ah := h1−γ(R̃h − Id) ⇀ A in W1,2(S; R3×3), (3.27)

h1−γ(∇hỹh − Uj) → AUj in L2(Ω; R3×3), (3.28)

h2−2γ sym(R̃h − Id) → A2

2
in L2(S; R3×3). (3.29)

Lastly, convergences (a)-(b) of Theorem 3.1.3–(i) hold and A has the following structure:

Uj AUj = e3 ⊗∇′v −∇′v ⊗ e3. (3.30)

Proof. Up to a subsequence extraction, by Corollary 3.2.5 we have, for some index
j ∈ {1, . . . , l}, that

Dh,j := ∥dist(∇hyh, K j)∥L2(Ω) ≤ Chγ,

where we recall that γ := α/2. Let Qh and Rh be, respectively, the constant rotation
and the map whose existence is guaranteed by Proposition 3.2.6. Since h−1Dh,j → 0
we can suppose that Rh ∈ W1,2(S; SO(3)). Let ỹh := QT

h yh. By definition ỹh and
R̃h := QT

h Rh satisfy (3.24), (3.25) and (3.26). Let

Mh :=
1
|Ω|

∫
Ω
∇hỹhU−1

j dx.

From (3.24) and (3.25) we can deduce

|Mh − Id | =
∣∣∣∣Mh −

1
|Ω|

∫
Ω

Id dx
∣∣∣∣ ≤ 1

|Ω|

∫
Ω
|∇hỹhUj

−1 − Id | dx

≤ Chγ−1.

Therefore, by Lemma 3.2.10 there exists a rotation Ph ∈ SO(3) such that |Ph − Id | ≤
Chγ−1 and ∫

Ω
skew

(
Ph∇hỹhU−1

j

)
dx = 0.

Thus, redefining ỹh := PhQT
h yh (so that R̄h := QhPT

h ) and R̃h = PhQT
h Rh we can

additionally suppose that∫
Ω

skew
(
∇hỹhU−1

j

)
dx = 0. (3.31)

Moreover, we can choose the additive constant vector ch so that∫
Ω

(
ỹh − Uj

(
x′

hx3

))
dx = 0. (3.32)

From (3.25) we deduce that ∥Ah∥L2 ≤ C. Moreover, since ∇Ah = h1−γ∇R̃h, by
(3.26) we have that Ah is bounded in W1,2(S; R3×3). Hence, up to a subsequence,
there is A ∈ W1,2(S; R3×3) such that (3.27) holds true. By (3.24) and (3.27) we get
(3.28). Using the identity

(Q − Id)T(Q − Id) = −2 sym(Q − Id) ∀ Q ∈ SO(3),
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we obtain

sym(Ah) =
1
2

h1−γ(R̃h − Id)T
(R̃h − Id) → 0 = sym(A) in L2(S; R3×3),

that is, A = −AT . In particular, we have

h2−2γ sym(R̃h − Id) = −1
2

AT
h Ah → A2

2
in L2(S; R3×3),

that is precisely (3.29).
To simplify the notation, we will write U instead of Uj for the rest of the

proof. Consider vh as defined in (3.4) for the deformation ỹh. By (3.32) and the
Poincaré–Wirtinger inequality it follows that

∥vh∥2
W1,2(S) ≤ C∥∇vh∥2

L2(S;R2) ≤ Ch2−2γ
∫

Ω
|U(∇′ỹh(x)− U1,2)|2 dx

≤ Ch2−2γ
∫

Ω
|∇′

hỹh − U1,2|2 dx ≤ Ch2−2γ
∫

Ω
|∇hỹh − U|2 dx ≤ C.

Hence, up to a subsequence, there is a map v ∈ W1,2(S) such that vh ⇀ v in
W1,2(S). Now, we want to show that ∇′vh → ∇′v = eT

3 (UAU)1,2 from which we
can deduce that v ∈ W2,2(S). Clearly,

∇′vh = h1−γ
∫

Ω
eT

3 U
(
∇′ỹh − U1,2

)
dx.

By (3.28), it follows that

∇′vh → ∇′v = eT
3 (UAU)1,2. (3.33)

Now we focus on the map uh defined as in (3.3). We have∫
Ω

skew(∇′uh) dx = min
{

h−γ, h2−2γ
} ∫

Ω
skew

(
U1,2(∇′ỹh − U1,2)

)
dx

= min
{

h−γ, h2−2γ
} ∫

Ω
U1,2 skew

(
∇hỹhU−1 − Id

)
U1,2 dx

= min
{

h−γ, h2−2γ
}

U1,2

[∫
Ω

skew
(
∇hỹhU−1 − Id

)
dx
]

U1,2

and the last term is identically zero by (3.31). Therefore, we can apply Korn’s
inequality to deduce

∥uh∥2
W1,2 ≤ C∥ sym(∇′uh)∥2

L2(S;R2×2)

≤ C min
{

h−2γ, h4−4γ
} ∫

Ω

∣∣∣sym(∇hỹhU−1 − Id)
∣∣∣2 dx

≤ C min
{

h−2γ, h4−4γ
} [

∥∇hỹhU−1 − R̃h∥2
L2 + ∥ sym(R̃h − Id)∥2

L2

]
≤ C min

{
h−2γ, h4−4γ

}
max

{
h2γ, h4γ−4

}
≤ C,

where we have used (3.24) and (3.29). This proves the weak convergence of uh, up
to subsequences. Reasoning as before it is easy to note that

h1−γ max
{

hγ, h2γ−2
}
∇′uh → U1,2 AU1,2 = (UAU)′.



3.2 COMPACTNESS ESTIMATES 67

By the assumption γ = α/2 > 1 we have that h1−γ max
{

hγ, h2γ−2} → 0, so
(UAU)′ = 0. Since A is skew-symmetric, so is UAU and this shows (3.30) by
(3.33).

Remark 3.2.12. In our setting uh and vh are the (suitably rescaled) components of
the displacement ωh with respect to the reference configuration UjΩ in the basis
{U−1

j ei : i = 1, 2, 3}, that is,

ωh = U−1
j

(
max{hγ, h2γ−2}uh

hγ−1vh

)
.

Note that a basis of the tangent space to the midplane Uj(S × {0}) is given by
{Uje1, Uje2}, while the normal direction is U−1

j e3. Thus, it may look more natural
to define the in-plane and the out-of-plane displacement in terms of this basis, that
is, to consider ũh and ṽh such that

ωh = Uj

(
ũh
0

)
+ ṽhU−1

j e3.

It is easy to see that

uh = min{h−γ, h2−2γ}(U2
j )

′ũh,

vh = h1−γ

(
ṽh + (U2

j )
1,2
(

ũh
0

)
· e3

)
,

so that h1−γṽh has the same limit as vh, while min{h−γ, h2−2γ}ũh converges to
some ũ, representing the same displacement as u expressed in a different basis.
Note that the same argument would apply defining ũh in terms of a basis of the
form {v1, v2, U−1

j e3}, with v1, v2 ∈ span{Uje1, Uje2}.

Corollary 3.2.13. In the same notation and hypothesis of Proposition 3.2.11, there exists
a map G ∈ L2(Ω, R3×3) such that, up to a subsequence,

Gh := h−γ
(

R̃T
h ∇hỹh − Uj

)
⇀ G in L2(Ω; R3×3). (3.34)

Moreover, G1,2 is affine in x3, that is

G1,2(x′, x3) = Ga(x′) + x3Gb(x′).

Finally,
(UjGb)

′ = −(∇′)2v

and

sym(UjGa)
′ = sym(∇′u) if α > 4, (3.35)

(sym(UjGa))
′ = sym(∇′u) +

1
2
|U−1

j e3|2∇′v ⊗∇′v if α = 4, (3.36)

∇′u +∇′uT + |U−1
j e3|2∇′v ⊗∇′v = 0 if 2 < α < 4. (3.37)



68 CHAPTER 3. SINGULARLY PERTURBED MULTI-WELL ENERGIES

Proof. We will write U in place of Uj to simplify the notation. Convergence (3.34)
follows immediately from (3.24). To show that G1,2 is affine, we study the difference
quotient

Hs
h(x′, x3) :=

1
s
(Gh(x′, x3 + s)− Gh(x′, x3)),

for s such that x3 + s ∈ I. Repeating the same computation as in Corollary 3.2.9,
we deduce that for α = 1, 2, 3 and β = 1, 2 we have

(R̃h(x′)Hs
h(x′, x3))αβ =

1
s

∂

∂xβ

∫ s

0
h1−γ

(
1
h

∂ỹh,α

∂x3
(x′, x3 + σ)− Eα3

)
dσ. (3.38)

By (3.28), the integral on the right hand-side converges strongly as h → 0 in L2(Ω)
to ∫ s

0
(AU)α3 dσ = s(AU)α3.

Hence, the right-hand side of (3.38) converges strongly in the dual of W1,2
0 (Ω) to

∂

∂xβ
[(AU)α3]. By (3.34), the left-hand side of (3.38) converges weakly in L2(Ω) to

Hs(x′, x3)αβ :=
1
s
(G(x′, x3 + s)αβ − G(x′, x3)αβ). (3.39)

Since L2(Ω) is continuously embedded in (W1,2
0 (Ω))∗, we obtain

Hs(x′, x3)αβ =
∂

∂xβ
[(AU)α3] ∀ α = 1, 2, 3, ∀ β = 1, 2. (3.40)

In particular, the first two columns of Hs are independent of x3 (recall that A
depends only on x′) and so the first two columns of G are affine in x3.

For the final part of the statement note that Gh can be rewritten as follows

Gh =
∇hỹh − Uj

hγ
−

R̃hUj − Uj

hγ
+ (R̃h − Id)T ∇hỹh − R̃hUj

hγ
.

Hence,

(UjGh)
′ = (Uj)1,2

∇hỹhU−1
j − Id

hγ
(Uj)

1,2 − hγ−2(Uj)1,2
R̃h − Id
h2γ−2 (Uj)

1,2

+

[
Uj(R̃h − Id)T ∇hỹh − R̃hUj

hγ

]′
.

(3.41)

If γ > 2, then min{h−γ, h2−2γ} = h−γ. Integrating with respect to x3, taking the
symmetric part and passing to the limit as h → 0 in view of (3.24), (3.27) and (3.29),
we get (3.35).

If γ = 2, passing to the limit in (3.41) we also get the term −(UA2U′)/2. By the
characterization (3.30) of UAU we get with some computation

(UA2U)′ = (UAU(U−1)2UAU)′ = (UAU)1,2(U−1)2(UAU)1,2

= −∇′vT(U−1e3)
TU−1e3∇′v = −|U−1e3|2∇′v ⊗∇′v,
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proving (3.36). Lastly, if 1 < γ < 2, we multiply both sides of (3.41) by h2−γ before
passing to the limit. The left-hand side converges to 0, while the right-hand side
converges again to

sym(∇′u) +
1
2
|U−1

j e3|2∇′v ⊗∇′v,

proving (3.37). Finally, note that Gb = H1 by (3.39). Thus, by (3.40) for α, β = 1, 2

(UGb)αβ =
3

∑
k=1

(U)αk

3

∑
l=1

∂Akl
∂xβ

(U)l3 =
∂

∂xβ
(UAU)α3 = − ∂2v

∂xβ∂xα
.

Proof of Theorem 3.1.3–(i). It immediately follows from Proposition 3.2.11 and Co-
rollary 3.2.13.

3.3 Proof of Γ-convergence

We are now ready to complete the proofs of Theorem 3.1.1 and Theorem 3.1.3. By
the results of the previous section, we just need to prove the lim inf inequality and
the existence of recovery sequences.

3.3.1 The lim inf inequality

Proof of Theorem 3.1.1–(ii) and Theorem 3.1.3–(ii). Define the matrix Gh as in Corol-
lary 3.2.13 or Corollary 3.2.9, depending on the value of α. Let

Ω̃h := {x ∈ Ω : |Gh(x)| < h−1}

and let χh be its characteristic function. Clearly, χh is bounded and χh → 1 in
L1(Ω). Thus, we have χhGh ⇀ G in L2(Ω). Expanding W , we get

W(∇hyh) ≥ W(Uj + hγGh) ≥
1
2

Qj(hγGh)− m(hγ|Gh|)hα|Gh|2,

where m is the modulus of continuity of D2W at Uj. In particular

Eα
h(yh) ≥

1
2

∫
Ω

[
Qj(χhGh)− m(hγ|χhGh|)|χhGh|2

]
dx

≥ 1
2

∫
Ω

Qj(χhGh) dx − Cm(hγ−1).

Recall that Qj is weakly lower semicontinuous in L2(Ω) by convexity. Thus,
passing to the limit and applying Lemma 2.2.5 we obtain

lim inf
h→0

Eα
h(yh) ≥

1
2

∫
Ω

Qj(G) dx =
∫

Ω
Qj(U−1

j sym(UjG)) dx

≥
∫

Ω
Q̄j(sym(UjG)′) dx.

Recall that

sym(UjG(x′, x3))
′ = sym(UjGa(x′))′ + x3 sym(UjGb(x′))′.

By Corollary 3.2.9 and Corollary 3.2.13 we conclude.
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3.3.2 Recovery sequences

We are left with the construction of the recovery sequences. Here, for a clearer
exposition, we follow the reverse order and start with the recovery sequence for
the case α > 4.

Proof of Theorem 3.1.3–(iv). Let j ∈ {1, . . . , l}. Suppose α > 4. By a standard
density argument it is sufficient to exhibit a recovery sequence for u ∈ C∞(S̄; R2)
and v ∈ C∞(S̄). We define

Bh(x′, x3) :=
(

hγu
hγ−1v

)
− hγx3

(
∇′vT

0

)
+

hγ+1

2
x2

3ξ(x′) + hγ+1x3ζ(x′),

and

yh(x′, x3) := Uj

(
x′

hx3

)
+ U−1

j Bh(x′, x3),

where ξ, ζ are smooth functions independent of x3 to be chosen later. We immedi-
ately deduce that

(i) h1−γvh = v +
1

24
h2ξ3 → v in W1,2(Ω),

(ii) h−γuh = u +
1

24
hξ12 → u in W1,2(Ω; R2).

Computing the rescaled gradient, we get

∇hyh = Uj + U−1
j ∇hBh(x′, x3),

where

∇hBh = hγ

[(
∇′u − x3(∇′)2v −h−1∇′vT

h−1∇′v 0

)
+ (x3ξ + ζ)⊗ e3

]
+ O(hγ+1).

By construction, we have ∇hyh = MhUj, where

Mh := Id+U−1
j ∇hBhU−1

j .

We first compute MT
h Mh and obtain

MT
h Mh = Id+2U−1

j sym(∇hBh)U−1
j + O(h2γ−2). (3.42)

Note that sym(∇hBh) = O(hγ). Then, we develop
√

MT
h Mh near the identity to

obtain √
MT

h Mh = Id+U−1
j sym(∇hBh)U−1

j + O(h2γ−2).

Let W̃(P) = W(PUj) for every P ∈ R3×3. Clearly W̃ is frame indifferent and

D2W̃(Id)M : M = Qj(MUj).
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Note that γ− 2 > 0 whenever α > 4. Developing W̃ near the identity and recalling
Lemma 2.2.8, we obtain

W(∇hyh) = W̃(Mh) = W̃
(√

MT
h Mh

)
= D2W̃(Id)(Mh − Id) : (Mh − Id) + o(|F − Id |2)

= h2γ 1
2

Qj
(
h−γU−1

j sym(∇hBh) + O(hγ−2)
)
+ o(h2γ).

Observing that ∇2
hyh = U−1

j ∇2
hBh = O(hγ−1), we get by assumption (P2)

lim
h→0+

Eα
h(yh) =

1
2

∫
Ω

Qj(U−1
j sym(B)) dx,

where

B := U−1
j

((
∇′u − x3(∇′)2v 0

0 0

)
+ x3ξ ⊗ e3 + ζ ⊗ e3)

)
.

Choose ξ := −2Lj((∇′)2v) and ζ := 2Lj(sym(∇′u)) where Lj is the linear operator
defined in (2.9). Thus,

1
2

∫
Ω

Qj(U−1
j sym(B)) dx =

1
24

∫
S

Qj(U−1
j ((∇′)2v + sym(ξ ⊗ e3))) dx′

+
1
2

∫
S

Qj(U−1
j (sym(∇′u) + sym(ζ ⊗ e3))) dx′

=
1
24

∫
Ω

Q̄j((∇′)2v) dx′ +
1
8

∫
Ω

Q̄j(∇′uT +∇′u) dx′

as desired. The factor 1/24 is due to the integration of x2
3 over I, while the mixed

term gives no contribution since x3 has zero mean over I.
Suppose now α = 4. We use the same recovery sequence and the same notation

as in the case α > 4. The main difference is that terms of order h2γ−2 in (3.42)
cannot be neglected. By some simple computation we get

MT
h Mh = Id+2h2U−1

j (Ph + V)U−1
j + O(h3),

where

Ph :=
(
∇′u − x3(∇′)2v −h−1∇′v

h−1∇′v 0

)
+ (x3ξ + ζ)⊗ e3 +

1
2
|U−1

j e3|2∇′v ⊗∇′v,

V := −
(

U−1
j e3 · U−1

j ∇′vT
)

sym(∇′v ⊗ e3) +
1
2

∣∣∣U−1
j ∇′vT

∣∣∣2 e3 ⊗ e3.

Hence, developing the square root we obtain√
MT

h Mh = Id+h2U−1
j sym(Ph + V)U−1

j + O(h3).

Note that sym(Ph) is independent of h. To conclude it is then sufficient to choose
ξ := −2Lj((∇′)2v) and

ζ := −1
2

∣∣∣U−1
j ∇′vT

∣∣∣2 e3 +
(

U−1
j e3 · U−1

j ∇′vT
)
∇′v

+ 2Lj

(
sym(∇′u) +

1
2
|U−1

j e3|2∇′v ⊗∇′v
)

.
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In the case 2 < α < 4 the construction of the recovery sequence is different and
involves the perturbation of an isometric immersion. In doing so, we will need
some higher regularity of the boundary of S to deal with the penalty term. We
start by proving a preliminary Lemma.

Lemma 3.3.1. Let U ∈ R3×3 be a symmetric and positive definite matrix. For ε > 0 let
yε ∈ W2,2(S; R3) be a map of the form

yε(x′) := U
(

x′

0

)
+ εvU−1e3 + ε2U

(
uε

0

)
,

such that ∇′yT∇′y = (U2)′, where v ∈ W2,∞(S) and uε is a bounded sequence in
W2,∞(S; R2). Then, if νε is defined as in Lemma 3.2.8, we have

∇′yT
ε ∇′νε = −ε(∇′)2v + O(ε2).

Proof. First, we compute ∂1yε ∧ ∂2yε. We have

∂1yε ∧ ∂2yε = Ue1 ∧ Ue2 + ε

[
Ue1 ∧ U−1

(
0

∂2v

)
+ U−1

(
0

∂1v

)
∧ Ue2

]
+ O(ε2).

Given the identity Ua ∧ Ub = det(U)U−1(a ∧ b), we easily deduce that

∂1yε ∧ ∂2yε = Ue1 ∧ Ue2

+ ε det(U)U−1
[
∂2ve1 ∧ (U−1)2e3 + ∂1v(U−1)2e3 ∧ e2

]
+ O(ε2).

Computing the cross products, we get

∂1yε ∧ ∂2yε = Ue1 ∧ Ue2 − ε det(U)U−1

 |U−1e3|2∂1v
|U−1e3|2∂2v

−∑2
k=1(U

−1ek · U−1e3)∂kv

+ O(ε2).

Let us set q(x′) := − 1
|U−1e3|2 ∑2

k=1(U
−1ek · U−1e3)∂kv. We have

∇′(∂1yε ∧ ∂2yε) = −ε|U−1e3|2 det(U)U−1
(
(∇′)2v
∇′q

)
+ O(ε2).

Now observe that for every triplet of indices i, j, k = 1, 2 we have

∂iyε · ∂2
jkyε = O(ε2).

Moreover,
∂iyT

ε U−1 = eT
i + O(ε).

Combining the previous equations with the definition of νε, the thesis follows.

Proof of Theorem 3.1.3–(iii). Firstly, suppose that v ∈ C∞(S̄) satisfies (3.5). By Pro-
position 3.1.2 we have det((∇′)2v) = 0 in S. For h ≪ 1 we can apply The-
orem 2.2.11 and construct a sequence uh ∈ W2,∞(S; R2) with ∥uh∥W2,∞ uniformly
bounded such that the map

ỹh(x′) := Uj

(
x′

0

)
+ hγ−1vU−1

j e3 + h2γ−2Uj

(
uh
0

)
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satisfies ∇′ỹT
h ∇

′ỹh = (U2
j )

′. Define νh as in Lemma 3.2.8 with U = Uj for the map
ỹh. We consider the recovery sequence given by

yh(x′, x3) := ỹh(x′) + hx3νh(x′) +
1
2

hγ+1x2
3U−1

j ξ(x′),

where ξ is a smooth function independent of x3 to be determined later. Observe
that

vh = v + hγ−1U2
j

(
uh
0

)
· e3 +

1
24

h2ξ3 → v in W1,2(S).

We have

∇hyh =
(
∇′ỹh νh

)
+ hx3

(
∇′νh 0

)
+ hγx3U−1

j ξ ⊗ e3 + O(hγ+1). (3.43)

Define Rh :=
(
∇′ỹh νh

)
U−1

j . By definition of νh, we have Rh ∈ SO(3). We
rewrite ∇hyh as

∇hyh = Rh(Uj + Bh),

where

Bh := hx3U−1
j

(
∇′ỹT

h ∇
′νh 0

0 0

)
+ hγx3RT

h U−1
j ξ ⊗ e3 + O(hγ+1).

Note that we used the fact that νT
h ∇

′νh = 0, which follows differentiating |νh| ≡ 1.
By Lemma 3.3.1 with ε = hγ−1 we have

∇′ỹT
h ∇

′νh = −hγ−1(∇′)2v + O(h2γ−2).

Moreover, it is easy to check that Rh = Id+O(hγ−1). Thus,

Bh = hγU−1
j

(
−x3(∇′)2v 0

0 0

)
+ hγx3U−1

j ξ ⊗ e3 + O(h2γ−1),

and ∇hyh → Uj in L2(Ω; R3×3). In particular, h−γBh → B in L2(Ω; R3×3), where

B := U−1
j

(
−x3(∇′)2v 0

0 0

)
+ x3U−1

j ξ ⊗ e3.

Developing W we get

W(∇hyh) =
1
2

Qj(Bh) + o(h2γ).

We are left to estimate the penalty term. We have ∇2
hỹh = O(hγ−1) and, by

definition of νh, ∇′νh = O(hγ−1). By (3.43), it follows that ∇2
hyh = O(hγ−1).

Hence, by (P2), we deduce that

lim
h→0+

Eα
h(yh) =

1
2

∫
Ω

Qj(B) dx.

To conclude, it is sufficient to choose ξ := −2Lj((∇′)2v), where Lj is the linear
operator defined in (2.9).

For the general case of v ∈ W2,2(S) satisfying (3.5) we apply Corollary 2.2.13
and a standard diagonal argument to conclude.
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We are left to construct the recovery sequence for α = 2.

Proof of Theorem 3.1.1–(iii). Let j ∈ {1, . . . , l}. Firstly, suppose that y ∈ C∞(S̄; R3)
satisfies (∇′y)T∇′y = (U2

j )
′. Define

yh(x′, x3) := y(x′) + hx3ν(x′) +
1
2

h2x2
3ξ(x′),

where ξ is a smooth function independent of x3 to be chosen and ν is defined as
in Lemma 3.2.8. Let R :=

(
∇′y ν

)
U−1

j . By construction R ∈ SO(3) a.e. in S.
Computing the rescaled gradient we get

∇hyh =
(
∇′y ν

)
+ hx3

(
∇′ν ξ

)
+

1
2

h2x2
3
(
∇′ξ 0

)
= R

[
Uj + hx3U−1

j (∇′yT∇′ν) + hx3RTξ ⊗ e3 + O(h2)
]

.

It is clear that ∇hyh →
(
∇′y ν

)
in L2(S; R3×3). For h ≪ 1 we expand W and get

W(∇hyh) =
1
2

h2x2
3Qj

(
U−1

j (∇′yT∇′ν) + RTξ ⊗ e3

)
+ o(h2).

By the symmetry of Qj (see Lemma 2.2.5) we immediately deduce that

W(∇hyh) =
1
2

h2x2
3Qj

(
U−1

j (∇′yT∇′ν + sym(UjRTξ ⊗ e3))
)
+ o(h2).

Indeed, since ∂j(∇′yTν) = 0, the matrix ∇′yT∇′ν is symmetric by the following
chain of equalities

∂iy · ∂jν = −∂ijy · ν = −∂jiy · ν = −∂jy · ∂iν. (3.44)

Set ξ := RU−1
j Lj(∇′yT∇′ν), where Lj is the linear operator defined in (2.9). By

construction, we have

1
h2

∫
Ω
W(∇hyh) dx =

1
24

∫
S

Q̄j(∇′yT∇′ν) dx + o(1).

Clearly, the rescaled Hessian ∇2
hyh is bounded in L∞(Ω; R3×3×3). Hence, by (P2)

we have
ηp(h)

h2

∫
Ω
|∇2

hyh|p dx → 0,

concluding the proof of the existence of a recovery sequence for a smooth y.
To conclude the proof, we first observe that EK

j is continuous with respect to the

W2,2 topology. Let Gj := (U2
j )

′. For every y ∈ W2,2
iso,Gj

(S; R3), arguing as in (3.44),

we have (∇′y)T∇′ν = −(∇′)2yν, where ν is defined as in Lemma 3.2.8. Given a
sequence (yn) ⊂ W2,2

iso,Gj
(S; R3) such that yn → y in W2,2(S; R3) we have, up to a

subsequence, (∇′)2yn → (∇′)2y almost everywhere in S. Let νn and ν be defined
as in Lemma 3.2.8 for yn and y, respectively. Then, νn → ν in L1(S; R3), thus, up to
subsequences, νn → ν almost everywhere in S. Hence, (∇′)2ynνn → (∇′)2yν and
by Dominated Convergence Theorem EK

j (yn) → EK
j (y).
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Moreover, the set of functions y ∈ C∞(S̄; R3) satisfying (∇′y)T∇′y = (U2
j )

′

is dense in W2,2
iso,Gj

(S; R3). Indeed, let ε > 0 and pick an isometric immersion

y ∈ W2,2
iso,Gj

(S; R3). Define ỹ(x) := y(G−1/2
j x). Clearly, ỹ ∈ W2,2(G1/2S; R3) and

∇′ỹT∇′ỹ = G−1/2
j ∇′yT∇′yG−1/2

j = Id .

The set G1/2
j S satisfies condition (2.17). Hence, by Theorem 2.2.12, there exists

a smooth isometric immersion ϕ̃ for the flat metric Id such that ∥ỹ − ϕ̃∥W2,2 ≤
ε
√

det(G1/2
j ). Defining ϕ(x) := ϕ̃(G1/2

j x) we get ϕ ∈ C∞(S̄; R3),

∇ϕT∇ϕ = Gj = (U2
j )

′,

and ∥y − ϕ∥W2,2 ≤ ε. A standard diagonal argument allows us to conclude.

Remark 3.3.2. Observe that the argument used in [FJM02] to prove the existence
of a recovery sequence cannot be applied here. Indeed, the truncation argument,
which is the basis of the construction of [FJM02], would lead to deformations with
a low regularity, for which the penalty term cannot be written.

3.4 Convergence of minimizers with dead loads

In this section we prove Theorem 3.1.6 and Theorem 3.1.8. We start by showing
that a sequence of deformations with bounded total energy has also bounded
elastic energy.

Lemma 3.4.1. Let α ≥ 2 and q > 1. Suppose that (yh) ⊂ W1,2(Ω; R3) is a sequence of
deformations that are quasi-minimizers for Jα

h , that is,

lim
h→0

(Jα
h (yh)− inf Jα

h ) = 0.

Then, Eα
h(yh) ≤ C for every h > 0.

Proof. Firstly, we will prove that hαEα
h(yh) → 0. Fix j ∈ {1, . . . , l} and let Qh, Rh

be, respectively, the rotation and the map given by Proposition 3.2.6. Define

ỹh := yh − QhUj

(
x′

hx3

)
− ch,

where

ch :=
1
|Ω|

∫
Ω

(
yh − QhUj

(
x′

hx3

))
dx.

Using the test deformation (
x′

x3

)
7→ Uj

(
x′

hx3

)
and the assumption (3.10), we get infy Jα

h (y) ≤ Ch1−γ, so that

Jα
h (yh)− Ch1−γ ≤ Jα

h (yh)− inf
y

Jα
h (y) = o(1) =⇒ Jα

h (yh) ≤ Ch1−γ.
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We have

hαEα
h(yh) = hα Jα

h (yh) +
∫

Ω
fh · ỹh dx +

∫
S

fh · QhUj

(
x′

0

)
dx

≤ Chγ+1 + Chγ+1∥∇hỹh∥Lq .
(3.45)

Consider the set
Ω̃h := {x ∈ Ω : dist(∇hyh, K) ≥ 1}.

By Proposition 3.2.6 and Remark 3.2.7, we deduce

∥∇hỹh∥
q
Lq =

∫
Ω
|∇hyh − QhUj|q dx ≤ Ch−2

∫
Ω

distq(∇hyh, K j) dx

≤ Ch−2
∫

Ω
distq(∇hyh, K) dx + Ch−2

≤ Ch−2
∫

Ω̃h

distq(∇hyh, K) dx + Ch−2

≤ Chα−2Eα
h(yh) + Ch−2,

(3.46)

where we have used (3.1). Combining (3.45)–(3.46) we get

hαEα
h(yh) ≤ Chγ+1 + Chγ+1− 2

q (hαEα
h(yh))

1
q + Chγ+1− 2

q .

Recalling that q > 1, by Young’s inequality we deduce that

hαEα
h(yh) ≤ Chγ+1 + Chq′(γ+1− 2

q ) + Chγ+1− 2
q → 0.

Hence, we can apply Proposition 3.2.1 and deduce that, at least along a sub-
sequence, there is an index j0 ∈ {1, . . . , l} such that for h ≪ 1∫

Ω
dist2(∇hyh, K j0) dx ≤ hα[Eα

h(yh) + (Eα
h(yh))

θ ].

We now show that Eα
h(yh) ≤ C. To simplify the exposition, we suppose that

j0 = j. By Proposition 3.2.6 we have

∥ỹh∥2
L2 ≤ C∥∇ỹh∥2

L2 ≤ Ch−2∥dist(∇hyh, K j)∥2
L2

≤ Chα−2[Eα
h(yh) + (Eα

h(yh))
θ ].

(3.47)

Pick R̄hUkh
∈ Mh and define

J̃α
h (y) := Eα

h(y)−
1
hα

∫
Ω

fh · y dx +
1
hα

∫
S

fh · R̄hUkh

(
x′

0

)
dx.

Note that yh are quasi-minimizers for the functional J̃α
h . Moreover, using the test

deformation (
x′

x3

)
7→ R̄hUkh

(
x′

hx3

)
,

we get infy J̃α
h (y) ≤ 0, so that

J̃α
h (yh) ≤ J̃α

h (yh)− inf
y

J̃α
h (y) ≤ C.
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Hence,

Eα
h(yh) = J̃α

h (yh) +
1
hα

∫
Ω

fh · yh dx − 1
hα

∫
S

fh · R̄hUkh

(
x′

0

)
dx′

= J̃α
h (yh) +

1
hα

∫
Ω

fh · ỹh dx +
1
hα

∫
S

fh · (QhUj − R̄hUkh
)

(
x′

0

)
dx′

≤ C + Ch−γ−1∥ fh∥L2(Eα
h(yh) + (Eα

h(yh))
θ)

1
2

≤ C + C(Eα
h(yh))

1
2 + C(Eα

h(yh))
θ
2 ,

where we have used (3.47) and the definition of Mh. Since 0 < θ/2 < 1, by an
application of Young’s inequality we conclude.

We are in a position to conclude the proof of Theorem 3.1.6.

Proof of Theorem 3.1.6. By Lemma 3.4.1 and Theorem 3.1.1–(i) there exists j ∈
{1, . . . , l} and y ∈ W2,2

iso,Gj
(S; R3) such that, up to a subsequence, (∇hyh) →(

∇′y ν
)

in L2(Ω; R3×3), where ν is defined as in Lemma 3.2.8. Let

ch :=
1
|Ω|

∫
Ω

yh dx

and define ỹh := yh − ch. By an application of the Poincaré–Wirtinger inequality,
we deduce that ỹh → y in W1,2(S; R3). By the strong convergence of h−2 fh and
(3.11), we get

1
h2

∫
fh · yh dx =

1
h2

∫
fh · ỹh dx →

∫
S

f · y dx.

By Theorem 3.1.1–(ii) we deduce that

lim inf
h→0

J2
h(yh) ≥ EK

j (y)−
∫

S
f · y dx = JK

j (y).

Now let i ∈ {1, . . . , l} and ȳ ∈ W2,2
iso,Gj

(S; R3). Let (ȳh) be the recovery sequence
for ȳ provided by Theorem 3.1.1–(iii). Then

JK
j (y) ≤ lim inf

h→0
J2
h(yh) ≤ lim sup

h→0
J2
h(yh) = lim sup

h→0
(inf

y
J2
h(y))

≤ lim sup
h→0

J2
h(ȳh) = lim

h→0
J2
h(ȳh) = JK

i (ȳ),

concluding the proof.

We move now to the case α > 2 proving Theorem 3.1.8.

Proof of Theorem 3.1.8. By Lemma 3.4.1, we have Eα
h(yh) ≤ C. Let R̄h, uh, vh and

j ∈ {1, . . . , l} be the sequences and the index given by Theorem 3.1.3–(i). Up to
subsequences, we have R̄h → R̄ in SO(3). We prove that R̄Uj ∈ M. This will also
show that j ∈ Λ. Indeed, let RUk ∈ K and define

ȳh(x′, x3) := RUk

(
x′

hx3

)
.
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We get

Jα
h (yh)− inf

y
Jα
h (y) ≥ Jα

h (yh)− Jα
h (ȳh)

≥ − 1
hα

∫
Ω

fh · yh dx +
1
hα

∫
Ω

fh · RUk

(
x′

0

)
dx

= − 1
hα

∫
Ω

fh · R̄hU−1
j

(
max{hγ, h2γ−2}uh

hγ−1vh

)
dx

+
1
hα

∫
Ω

fh · (RUk − R̄hUj)

(
x′

0

)
dx.

(3.48)

Multiplying by hγ−1 and passing to the limit we deduce that∫
Ω

f · (RUk − R̄Uj)

(
x′

0

)
dx ≤ 0,

where we have used convergence (3.10). Since RUk ∈ K is arbitrary, we have
R̄Uj ∈ M.

By Proposition 2.2.20, the projection Pj
h(Rh) is well-defined for h ≪ 1. Let

Wh ∈ R3×3
skew with |Wh| = 1 be such that

Pj
h(R̄h)Wh ∈ NRj

hPj
h(R̄h)

and R̄h := Pj
h(R̄h)edhWh , where dh := distSO(3)(R̄h, Pj

h(R̄h)). Then, by (3.48) with

RUk = Pj
h(R̄h)Uj and the fact that Fh(Pj

h(R̄h)WhUj) = 0 (see Section 2.2.3) we have,
expanding the exponential map,

Jα
h (yh)− inf

y
Jα
h (y) ≥ Jα

h (yh)− Jα
h

(
Pj

h(R̄h)Uj

(
x′

hx3

))
≥ −C −

d2
h

hα

∫
Ω

fh · Pj
h(R̄h)W2

h Uj dx + O

(
d3

h
hγ−1

)
.

(3.49)

Clearly Pj
h(R̄h) → R̄. Moreover, up to subsequences, Wh → W and owing to

Lemma 2.2.17, R̄W ∈ NRj
R̄, thus F(R̄W2Uj) < 0. We deduce by (3.49) that d2

h =

O(hγ−1). In particular, there exists β ≥ 0 such that h1−γd2
h → β2 and so

h
1
2 (1−γ)(R̄h − Pj

h(R̄h)) =
dh

h
1
2 (γ−1)

Pj
h(R̄h)Wh + O

(
d2

h

h
1
2 (γ−1)

)
→ βR̄W.

We are left to prove the minimality property. We show it for 2 < α < 4. The
other cases can be proved analogously. Firstly, note that

1
hα

∫
Ω

fh · yh dx − 1
hα

Fh(Pj
h(R̄h)Uj) →

∫
S

f · R̄U−1
j e3v dx − F(β2R̄W2Uj).

Indeed, we have the equality

1
hα

∫
Ω

fh · yh dx − F(Pj
h(R̄h)Uj) =

1
hα

∫
Ω

fh · R̄hU−1
j

(
h2γ−2uh
hγ−1vh

)
dx

− 1
hα

∫
Ω

fh · (Pj
h(R̄h)− R̄h)Uj

(
x′

0

)
dx.
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The first term behaves as follows

1
hα

∫
Ω

fh · R̄hU−1
j

(
h2γ−2uh
hγ−1vh

)
dx =

∫
Ω

1
hγ+1 fh · R̄hU−1

j

(
hγ−1uh

vh

)
dx

→
∫

S
f · R̄U−1

j e3v dx.

On the other hand, since Fh(Pj
h(R̄h)WhUj) = 0, we have

1
hα

Fh(Pj
h(R̄h)Uj) =

d2
h

hγ−1

∫
Ω

1
hγ+1 fh · Pj

h(R̄h)W2
h Uj

(
x′

0

)
dx + O

(
d3

h
hγ−1

)
,

that converges to F(β2R̄W2Uj). Thus, by Theorem 3.1.3–(ii) we have

lim inf
h→0

(Jα
h (yh) + F(Pj

h(R̄h)Uj)) ≥ JCVK
j (v, R̄, βW). (3.50)

Take an admissible quadruplet (i, ṽ, R̃, W̃) and let ỹh be the recovery sequence
for ṽ provided by Theorem 3.1.3–(iii). By Proposition 2.2.19, we can construct a
sequence of rotations R̃h converging to R̃ such that R̃h ∈ Ri

h. Note that, by (FI),

Eα
h(ỹh) = Eα

h(R̃hỹh),

so that Eα
h(R̃hỹh) → ECVK

i (ṽ). Moreover,

1
hα

∫
Ω

fh · R̃hỹh −
1
hα

Fh(R̃hUi) =
1
hα

∫
S

fh · R̃hU−1
i

(
h2γ−2ũh
hγ−1ṽh

)
dx

→
∫

S
f · R̃U−1

i e3ṽ dx,

where ũh, ṽh are defined as in (3.3)–(3.4) with ỹh and Ui in place of yh and Uj,
respectively. By hypothesis (F1), we have that R̃hUi ∈ Mh for h ≪ 1. Thus,

Fh(Pj
h(R̄h)Uj) = Fh(R̃hUi),

and F(R̃(W̃)2Ui) ≤ 0. Hence, by (3.50) we deduce that

JCVK
j (v, R̄T , βW) ≤ lim inf

h→0

(
Jα
h (yh) +

1
hα

Fh(Pj
h(R̄h)Uj)

)
≤ lim sup

h→0

(
Jα
h (yh) +

1
hα

Fh(Pj
h(R̄h)Uj)

)
= lim sup

h→0

(
inf

y
Jα
h (y) +

1
hα

Fh(Pj
h(R̄h)Uj)

)
≤ lim sup

h→0

(
Jα
h (R̃hỹh) +

1
hα

Fh(R̃hUi)

)
= JCVK

i (ṽ, R̃, 0) ≤ JCVK
i (v, R̃, W̃),

that gives the minimality property.





4
Stability of the Von

Kármán’s regime under
Neumann boundary

conditions

4.1 Assumptions and main results

As in the previous chapter we assume S ⊂ R2 to be an open, bounded, and
connected set with Lipschitz boundary, representing the mid-plane of a plate. The
elastic energy density W is defined on R3×3 and has a single-well structure. Thus,
we use the notations presented in Section 2.1, dropping whenever possible the
dependence on the well. Recall that in the single-well case we have l := 1 and
U1 := Id. We assume that W satisfies the quadratic growth condition

W(M) ≥ C dist2(M, SO(3)) ∀ M ∈ R3×3.

In particular, (2.8) holds.
We assume the applied forces to be of the form

fh := h2 f , (4.1)

with f ∈ L2(S; R3), f not identically equal to 0.
The total energy for a deformation y ∈ W1,2(Ω; R3) is written as

Jh(y) := Ih(y)−
∫

Ω
fh · y dx =

∫
Ω
W(∇hy) dx − h2

∫
Ω

f · y dx.

We suppose that ∫
S

f dx′ = 0 (4.2)

81
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to avoid the trivial case in which the total energy has no lower bound.
In this chapter, we use EK, ECVK, and EVK to denote the same functionals

we have defined in Chapter 3. However, since there is a single well, we drop
the subscript denoting it. Moreover, we repeatedly use the compactness and Γ-
convergence results of Chapter 3 replacing Eα

h with D−1
h Ih, where Dh ⊂ R+ is an

infinitesimal sequence such that Dh = O(h2). Indeed, as we already observed in
Remark 3.1.5, these results hold in the single-well case also without penalty term.

Finally, we define the total energy in the Von Kármán’s and Kirchhoff’s regimes,
respectively, as

JVK(u, v, R, W) := EVK(u, v)−
∫

S
f · R

(
u
0

)
dx′ −

∫
S

f · RW
(

0
v

)
dx′

−
∫

S
f · RW2

(
x′

0

)
dx′,

JK(y) := EK(y)−
∫

S
f · y dx′.

The first functional is defined for every (u, v) ∈ W1,2(S; R2) × W2,2(S), R ∈ R
and RW ∈ NRR (see Section 2.1 for a definition of R and NRR). A quadruplet
(u, v, R, W) as above is called admissible. The Kirchhoff’s functional is defined for
every y ∈ W2,2

iso (S; R3).
Note that, differently from Chapter 3, in the total energy we have a contribution

of the in-plane displacement u. This stems from the fact that we are choosing a
different scaling for the loads, precisely h2 in place of h3.

These energies can be interpreted as the Γ-limit of the corresponding rescalings
of Jh. However, the Γ-limit result alone is not satisfactory, since we lack the
corresponding compactness properties for sequences with bounded total rescaled
energy.

Similarly to the Dirichlet case treated in [LM09], an exclusion principle in-
volving the stability of JVK and JK can be used to study the limit of minimizing
sequences in the Von Kármán’s regime. In our setting, these stability conditions
read as follows:

(S1) JK(y) ≥ 0 for every y ∈ W2,2
iso (S; R3) and, if JK(y) = 0, then y = R̂

(
x′

0

)
for

some R̂ ∈ SO(3),

(S2) JVK(u, v, R, W) ≥ 0 for every admissible quadruplet (u, v, R, W) with (u, v) ∈
Blin

iso and, if JVK(u, v, R, W) = 0 for some (u, v) ∈ Blin
iso, then v is affine,

where

Blin
iso :=

{
(u, v) ∈ W1,2(S; R2)× W2,2(S) : ∇uT +∇u +∇v ⊗∇v = 0 a.e.

}
.

Conditions (S1)–(S2) have to be interpreted as follows: whenever a deformation
minimizes the (non-negative) total energy then it must be a deformation with zero
elastic energy. In our framework, if (S1) holds, then the following compatibility
condition is in force:

RT f · e3 = 0, ∀ R ∈ R. (C)
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This is the main statement of Theorem 4.1.2. Compatibility condition (C) is the
rotation invariant generalization of the usual assumption on the scaling of the
normal component of the forces, see for example [FJM06]. Indeed, the standard
requirement fh · e3 = O(h3) in our setting translates to f · e3 = 0 (see (4.1)). As
illustrated in the following example, condition (C) can be satisfied by very simple
loads, despite seeming very restrictive.

Example 4.1.1. Consider S := (−1/2, 1/2)2 and f := x1e3. A quick computation
gives

F(R) =
1
12

R31,

thus, R = {R ∈ SO(3) : R31 = 1}. In particular for any optimal rotation R ∈ R we
have RTe3 = e1, so that RT f · e3 = (x1 − 1/2)e1 · e3 = 0.

From now on, unless otherwise stated, (yh) ⊂ W1,2(S; R3) denotes a quasi-
minimizing sequence for h−4 Jh, namely

lim sup
h→0

1
h4

(
Jh(yh)− inf

y
Jh(y)

)
= 0. (4.3)

Theorem 4.1.2. Assume that (C) is not valid. Then (S1) fails. Moreover, up to a sub-
sequence, every sequence (yh) of quasi-minimizers in the sense of (4.3) converge strongly

in W1,2(Ω; R3) to a minimizer ȳ ∈ W2,2
iso (S; R3) of JK with ȳ ̸= R

(
x′

0

)
for every

R ∈ SO(3).

Theorem 4.1.2 shows that in the purely Neumann case, some forces are incom-
patible with the Von Kármán’s regime. In particular, if (C) is not in force, the energy
of any sequence of quasi-minimizers as in (4.3) scales like h2, namely

0 < lim inf
h→0

1
h2 Eh(yh) < +∞.

Next, we state the stability alternative analogue to [LM09, Theorem 4].

Theorem 4.1.3. Let (yh) ⊂ W1,2(S; R3) be a sequence of quasi-minimizers in the sense
of (4.3). Suppose that conditions (S1)–(S2) hold true. Then lim suph→0 h−4Eh(yh) ≤ C
and there are sequences (R̄h) ⊂ SO(3) and (ch) ⊂ R3 such that, setting

ỹh := R̄T
h yh + ch,

we have the following convergences (up to a subsequence):

(a) uh :=
1
h2

∫
I

(
ỹ′h − x′

)
dx3 ⇀ ū in W1,2(S; R2),

(b) vh :=
1
h

∫
I

ỹh,3 dx3 → v̄ in W1,2(S) with v̄ ∈ W2,2(S),

(c) R̄h → R̄ ∈ R,

(d) h−1(P(R̄h)− R̄h) → R̄W̄ with R̄W̄ ∈ NRR̄,
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where P : SO(3) → R is the projection onto R. Finally, the quadruplet (ū, v̄, R̄, W̄)
minimizes JVK.

Similarly to [LM09, Theorem 6] we can show that (S1) and (S2) are in a relation-
ship, with the former being essentially stronger than the latter.

Theorem 4.1.4. Suppose that (S1) holds. Then JVK(u, v, R, W) ≥ 0 for every admissible
quadruplet with (u, v) ∈ Blin

iso. Moreover, (S2) holds for the functional

JVK
ε (u, v, R, W) := EVK(u, v)− (1 − ε)

∫
S

f · R
(

u
0

)
dx′

− (1 − ε)
∫

S
f · RW

(
0
v

)
dx′ − (1 − ε)

∫
S

f · RW2
(

x′

0

)
dx′

for every ε ∈ (0, 1).

In general the previous result does not hold when ε = 0. Indeed, one can only
deduce the positivity of JVK but not the triviality of the minimizers.

The stability conditions are deeply linked to the attainment of the infimum of
JVK. Indeed, we prove the following.

Theorem 4.1.5. Suppose that the stability condition (S2) and the compatibility condition
(C) hold true, and that dimR = 1. Then JVK attains its minimum over all admissible
quadruplets (u, v, R, W). Instead, if (S2) fails, then for every ε > 0 the infimum of the
functional

JVK
ε (u, v, R, W) := EVK(u, v)− (1 + ε)

∫
S

f · R
(

u
0

)
dx′

− (1 + ε)
∫

S
f · RW

(
0
v

)
dx′ − (1 + ε)

∫
S

f · RW2
(

x′

0

)
dx′

is −∞.

As for Theorem 4.1.4, also Theorem 4.1.5 might not hold for ε = 0 (see also
Remark 4.3.5). Roughly speaking, this result means that the load f is critical, i.e.,
as soon as the load increases the Von Kármán’s model ceases to be valid.

Remark 4.1.6. In Lemma 2.2.22 and Remark 2.2.23 it is proved that the dimension
of R is either zero or one. Theorem 4.1.5 holds also in the case dimR = 0. However,
if R is a singleton, our setting reduces to the one in [LM09]. For this reason, we
only give a sketch of the proof for the case dimR = 0 (see Remark 4.3.6).

To prove Theorem 4.1.5 a careful analysis of the invariance of JVK along affine
perturbations is needed.
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4.2 Stability alternative

The aim of this section is to prove Theorem 4.1.2–4.1.4.

In our arguments, we often compare the quasi-minimizing sequence yh (in the
sense of (4.3)) with carefully chosen test deformations ŷh. Indeed, we have

Jh(yh)− Jh(ŷh) = inf
y

Jh(y)− Jh(ŷh) + o(h4) = o(h4). (4.4)

Passing to the limit in (4.4) we deduce relevant properties of the quasi-minimizing
sequence yh. The test deformations ŷh we use are inspired by the recovery sequence
construction of [FJM06] and are similar in spirit to the recovery sequence we used
in Chapter 3. For this reason, we refer to Chapter 3 for the explicit computation of
their elastic energy.

In order to prove Theorem 4.1.2 it is crucial to have at our disposal the following
result, relating the energy scaling of yh and the compatibility condition (C). Here,
and in the rest of the section, we denote by (Dh) ⊂ R+ an infinitesimal sequence.

Theorem 4.2.1. Suppose that lim suph→0 D−1
h Eh(yh) ≤ C with Dh/h2 → 0. Then (C)

is in force, i.e., RT f · e3 = 0 for every R ∈ R.

For a quasi-minimizing sequence as in (4.3) we have that Eh(yh) ≤ Ch2 (see the
proof of Theorem 4.1.2). Thus, Theorem 4.2.1 equivalently ensures that the elastic
energy of yh scales like h2 when (C) does not hold true.

To prove Theorem 4.2.1 we proceed by steps, one for each possible limit of
Dh/h4. Every case corresponds to an elastic energy regime. In each step we
compare the quasi-minimizing sequence yh with test deformations having the
same elastic energy scaling.

The first part of the section is thus devoted to the proof of Theorem 4.2.1. Once
Theorem 4.2.1 is established, we move to the proof of Theorems 4.1.2 to 4.1.4.

We start by proving that, if we are in the Von Kármán’s energy scaling, the
quasi-minimizing sequence yh converges, up to a subsequence, to a rigid motion
given by an optimal rotation.

Lemma 4.2.2. Suppose that Eh(yh) ≤ CDh and Dh/h2 → 0. Let (R̄h) ⊂ SO(3)
be the sequence of rotations provided by Theorem 3.1.3–(i). Then, up to a subsequence,
R̄h → R̄ ∈ R.

Proof. Let R̄h, uh, and vh be the sequences given by Theorem 3.1.3–(i). Up to a
subsequence, R̄h → R̄ for some R̄ ∈ SO(3). To prove that R̄ ∈ R pick a rotation
R ∈ SO(3) and consider the test deformation

ŷh(x′, x3) := R
(

x′

hx3

)
. (4.5)
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The elastic energy of ŷh is zero, so

Jh(yh)− Jh(ŷh) ≥
∫

Ω
fh · ŷh dx −

∫
Ω

fh · yh dx

= −h2
∫

S
f · R̄h

(
max{

√
Dh, Dh/h2}uh

h−1√Dhvh

)
dx′

+ h2
∫

S
f · (R − R̄h)

(
x′

0

)
dx′.

Here, we have used that f does not depend on x3 and the symmetry of (−1/2, 1/2)
to deduce that ∫

Ω
f · R

(
0
x3

)
dx =

∫
Ω

f · Rh

(
0
x3

)
dx = 0.

Dividing by h2 and passing to the limit we deduce by (4.4), Theorem 3.1.3–(i), and
Remark 3.1.5

0 ≥
∫

S
f · (R − R̄)

(
x′

0

)
dx′,

which gives R̄ ∈ R.

Proof of Theorem 4.2.1. The proof is divided in three steps, one for each possible
elastic energy scaling. Let R̄h, uh, and vh be the sequences given by Theorem 3.1.3–
(i). Up to subsequences, R̄h → R̄ in SO(3), with R̄ ∈ R by Lemma 4.2.2.

Step 1. We start by considering the case where Dhh−4 → 0. Let R ∈ R and
consider the test deformation

ŷh(x′, x3) := R
(

x′

hx3

)
+ R

(
−h2x3∇vT

hv

)
. (4.6)

By the same computation done in the proof of Theorem 3.1.3–(iv) we have that
Eh(ŷh) = O(h4). Comparing the quasi-minimizing sequence with the test deform-
ations and using that R ∈ R we get

Jh(yh)− Jh(ŷh) ≥ O(h4) +
∫

Ω
fh · ŷh dx −

∫
Ω

fh · yh dx

= O(h4)−
∫

S
fh · R̄h

( √
Dhuh

h−1√Dhvh

)
dx′ +

∫
S

fh · (R − R̄h)

(
x′

0

)
dx′

+
∫

S
fh · R

(
0

hv

)
dx′

≥ O(h4) + h3
∫

S
f · R

(
0
v

)
dx′ − h

√
Dh

∫
S

f · R̄h

(
0
vh

)
dx′.

(4.7)

Dividing by h3 and passing to the limit, by (4.4) and the fact that Dhh−4 → 0 we
deduce that

0 ≥
∫

S
f · R

(
0
v

)
dx′ ∀ R ∈ R, ∀ v ∈ C∞(S̄),

and by density the same holds for every v ∈ L2(S). Since the map

v ∈ L2(S) 7→
∫

S
RT f ·

(
0
v

)
dx′
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is linear it must be identically zero, that is, RT f · e3 = 0 for any R ∈ R.
Step 2. We move now to the case where Dhh−4 → D > 0. Let R ∈ R and

v ∈ C∞(S̄) and consider again the test deformation ŷh as in (4.6). Arguing as in
(4.7), we deduce that

Jh(yh)− Jh(ŷh) ≥ h3
∫

S
f · R

(
0
v

)
dx′ − h

√
Dh

∫
S

f · R̄h

(
0
vh

)
dx′ + O(h4).

Dividing by h3 and passing to the limit we deduce by (4.4) that

0 ≥
∫

S
f · R

(
0
v

)
dx′ −

√
D
∫

S
f · R̄

(
0
v̄

)
dx′ ∀ R ∈ R, ∀ v ∈ C∞(S̄),

and by density the same holds for every v ∈ L2(S). Arguing as before, we conclude
by linearity.

Step 3. Finally, we discuss the case Dhh−4 → +∞. Let v ∈ C∞(S̄) ∩ Adet
(see Section 2.2.2 for the definition of Adet). By Theorem 2.2.10 there exists ũh ∈
W2,∞(S; R2) such that

ỹh(x′) :=
(

x′

0

)
+

(
h−2Dhũh
h−1√Dhv

)
is an isometric immersion, i.e., ∇′ỹT

h ∇
′ỹh = Id. Note that by (2.12) and the fact

that h−1√Dh → 0, we have ∥ũh∥W2,∞ ≤ C. Let R ∈ R and define

ŷh := Rỹh + hx3Rνh,

where νh := ∂1ỹh ∧ ∂2ỹh. Arguing as in the proof of Theorem 3.1.3–(iii) we have
Eh(ŷh) = O(Dh). Comparing the test deformation ŷh with the minimizing se-
quence, using that R ∈ R, and that (2.12) holds true, we get

Jh(yh)− Jh(ŷh) ≥
∫

Ω
fh · ŷh dx −

∫
Ω

fh · yh dx + O(Dh)

= −
∫

S
fh · R̄h

(
h−2Dhuh

h−1√Dhvh

)
dx′ +

∫
S

fh · (R − R̄h)

(
x′

0

)
dx′

+
∫

S
fh · R

(
h−2Dhũh
h−1√Dhv

)
dx′ + O(Dh)

≥ h
√

Dh

∫
S

f · R
(

0
v

)
dx′ − h

√
Dh

∫
S

f · R̄h

(
0
vh

)
dx′ + O(Dh).

Dividing by h
√

Dh and passing to the limit we obtain that for every R ∈ R and for
every v ∈ C∞(S̄) ∩Adet we have

0 ≥
∫

S
f · R

(
0
v

)
dx′ −

∫
S

f · R̄
(

0
v̄

)
dx′. (4.8)

Since S satisfies condition (2.17), Corollary 2.2.13 ensures that (4.8) actually holds
for any v ∈ Adet. By Lemma 4.2.2, R̄ ∈ R, hence, choosing R := R̄ we have once
again that v̄ maximizes the linear map

v 7→
∫

S
R̄T f ·

(
0
v

)
dx′
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on Adet. Note that Adet is not a linear space. However, if v ∈ Adet, then λv ∈ Adet
for any λ ∈ R. Therefore, we conclude that∫

S
R̄T f ·

(
0
v

)
dx′ = 0 ∀ v ∈ Adet.

Going back to (4.8), we deduce that

0 ≥
∫

S
f · R

(
0
v

)
dx′ ∀ R ∈ R, ∀ v ∈ Adet.

Hence, by linearity the same holds for every v ∈ spanAdet, where the closure is
taken in L2(S). The conclusion follows from Theorem 2.2.14.

The rest of the section is devoted to the proof of Theorem 4.1.2–4.1.4.

Proof of Theorem 4.1.2. Firstly, observe that Jh(yh) ≤ Ch2. Indeed, using the test
deformation (4.5) we have

inf
y

Jh(y) ≤ Jh(ŷh) = h2
∫

S
f · R

(
x′

0

)
dx′ ≤ Ch2.

By Proposition 3.2.6 there is a constant rotation Qh ∈ SO(3) such that

∥∇hyh − Qh∥2
L2 ≤ Ch−2Eh(yh).

We now define

ỹh := QT
h yh −

(
x′

hx3

)
+ ch

where ch is chosen so that ỹh has zero average. By Poincaré–Wirtinger inequality,
one obtains a bound from above on the elastic energy as follows

Eh(yh) = Jh(yh) +
∫

Ω
fh · yh dx ≤ Ch2 + h2

∫
Ω

f · Qhỹh dx + h2
∫

S
f ·
(

x′

0

)
dx′

≤ Ch2 + Ch2∥∇hyh − Qh∥L2 ≤ Ch2 + Ch(Eh(yh))
1
2 .

Thus, by a simple application of Young’s inequality, we get Eh(yh) ≤ Ch2. Assume
now that RT f · e3 ̸= 0 for some R ∈ R. It follows that

lim inf
h→0

1
h2 Eh(yh) = e > 0,

otherwise, defining Dh := Eh(yh), by Theorem 4.2.1 we would conclude that
RT f · e3 = 0 for every optimal rotation R ∈ R, contradicting the assumption.
By Theorem 3.1.1–(i), there exists ȳ ∈ W2,2

iso (S; R3) such that, up to a subsequence,
yh → ȳ in W1,2(Ω; R3) and ∇hyh →

(
∇′ȳ ν

)
, where ν := ∂1ȳ∧ ∂2ȳ. By a standard

Γ-convergence argument, being yh quasi-minimizing, we deduce that

1
h2 Jh(yh) → JK(ȳ) = inf JK.
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In particular, since the loading term is continuous, we deduce by the Γ-convergence
of h−2Eh that

1
h2 Eh(yh) → EK(ȳ) = e > 0.

This implies that ȳ ̸= R
(

x′

0

)
for every R ∈ SO(3), so condition (S1) is not satisfied.

We move now to the proof of Theorem 4.1.3.

Proof of Theorem 4.1.3. The proof follows the steps of [LM09, Theorem 4]. Arguing
as in the proof of Theorem 4.1.2 we get Eh(yh) ≤ Ch2.

Step 1. Firstly, suppose by contradiction that h−2Eh(yh) → e > 0. In this case
we can argue as in the proof of Theorem 4.1.2 to deduce that yh → ȳ in W1,2(S; R3),
EK(ȳ) = e > 0 and JK(ȳ) = 0 contradicting the stability condition (S1).

Step 2. Suppose now that h−2Eh(yh) → 0 and h−4Eh(yh) → +∞. We show that
this gives a contradiction. Set Dh := Eh(yh). Let R̄h, uh, and vh be the sequences
given by Theorem 3.1.3–(i). By Lemma 4.2.2, up to a subsequence Rh → R̄ ∈ R
thus, at least for h ≪ 1, the projection P(Rh) of Rh onto R is well-defined. Define
dh := distSO(3)(Rh,R) (see (2.5) for the definition of distSO(3)). Let Wh ∈ R3×3

skew
such that P(Rh)Wh ∈ NRP(Rh)

, |Wh| = 1, and Rh = P(Rh)edhWh . Recall that
NRP(Rh)

is the normal space to R at the point P(Rh) (see (2.3) for the definition of
normal space). By Lemma 2.2.17, up to a subsequence, Wh → W̄1 with |W̄1| = 1
and R̄W̄1 ∈ NRR̄. Indeed, in the setting of this chapter, (F2) is trivially true since
Rh = R for every h.

We now show that dh = O(h−1√Dh). Let v ∈ Adet ∩ C∞(S̄) and ũh ∈ W2,∞(S)
given by Theorem 2.2.10 so that the map

ỹh(x′) :=
(

x′

0

)
+

(
h−2Dhũh
h−1√Dhv

)
is an isometric immersion. Note that, since h−1√Dh → 0, we have the uniform
bound ∥ũh∥W2,∞ ≤ C. Consider the test deformation

ŷh := P(Rh)ỹh + hx3P(Rh)νh,

Reasoning as in the proof of Theorem 3.1.3–(iii), we have Eh(ŷh) = O(Dh). Thus,

Jh(yh)− Jh(ŷh) ≥
∫

Ω
fh · ŷh dx −

∫
Ω

fh · yh dx + O(Dh)

= −
∫

S
f · Rh

(
Dhuh

h
√

Dhvh

)
dx′ + h2

∫
S

f · (P(Rh)− Rh)

(
x′

0

)
dx′

+
∫

S
f · P(Rh)

(
Dhũh

h
√

Dhv

)
dx′ + O(Dh).

(4.9)

As showed in (2.20), we have that∫
S

f · P(Rh)W
(

x′

0

)
dx′ = 0 ∀W ∈ R3×3

skew. (4.10)
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Expanding the exponential map edhWh , recalling that by Theorem 4.2.1 we have
P(Rh)

T f · e3 = 0, and using both (2.12) and (4.10), we get from (4.9)

Jh(yh)− Jh(ŷh) ≥ −h2d2
h

∫
S

f · P(Rh)W2
h

(
x′

0

)
dx′

+ h
√

Dh

∫
S

f · (P(Rh)− Rh)

(
0
vh

)
dx′ + O(Dh, h2d3

h)

≥ −h2d2
h

∫
S

f · P(Rh)W2
h

(
x′

0

)
dx′

− hdh
√

Dh

∫
S

f · P(Rh)Wh

(
0
vh

)
dx′ + O(Dh, h2d3

h, h
√

Dhd2
h).

(4.11)

Suppose by contradiction that hdh/
√

Dh → +∞. Then dividing (4.11) by h2d2
h we

get

1
h2d2

h
(Jh(yh)− Jh(ŷh)) ≥ −

∫
S

f · P(Rh)W2
h

(
x′

0

)
dx′

−
√

Dh
hdh

∫
S

f · P(Rh)Wh

(
0
vh

)
dx′ + O

(
dh,

Dh

h2d2
h

,
√

Dh
h

)
. (4.12)

Note that, by (4.4) we have

lim sup
h→0

1
h2d2

h
(Jh(yh)− Jh(ŷh)) = lim sup

h→0

Dh

h2d2
h

h4

Dh

1
h4 (Jh(yh)− Jh(ŷh)) ≤ 0.

Passing to the limit in (4.12) we deduce that

0 ≥ −
∫

S
f · R̄W̄2

1

(
x′

0

)
dx′ > 0,

where the last inequality follows from the fact that R̄W̄1 ∈ NRR̄ and W̄1 ̸= 0 (see
(2.3) and (2.20)). This gives a contradiction and proves that dh = O(h−1√Dh).

To conclude the proof of Step 2 we show now that condition (S2) is violated,
getting a contradiction. Set

W̄ := lim
h→0

h√
Dh

dhWh.

Since R̄W̄1 ∈ NRR̄ we have R̄W̄ ∈ NRR̄. We have that

1
Dh

(Jh(yh) + h2F(P(Rh)))

=
1

Dh
Eh(yh)−

h2

Dh

∫
Ω

f · yh dx′ +
h2

Dh

∫
S

f · P(Rh)

(
x′

0

)
dx′

=
1

Dh
Eh(yh) +

h2

Dh

∫
S

f · (P(Rh)− Rh)

(
x′

0

)
dx′

− h2

Dh

∫
S

f · Rh

(
h−2Dhuh

h−1√Dhvh

)
dx′.
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Expanding twice the exponential map, recalling that P(Rh)
T f · e3 = 0, and by

(4.10) we get

1
Dh

(Jh(yh) + h2F(P(Rh)))

=
1

Dh
Eh(yh)−

h2d2
h

Dh

∫
S

f · P(Rh)W2
h

(
x′

0

)
dx′ −

∫
S

f · Rh

(
uh
0

)
dx′

+
h√
Dh

∫
S

f · (P(Rh)− Rh)

(
0
vh

)
dx′ + O

(
h2d3

h
Dh

)

=
1

Dh
Eh(yh)−

h2d2
h

Dh

∫
S

f · P(Rh)W2
h

(
x′

0

)
dx′ −

∫
S

f · Rh

(
uh
0

)
dx′

− hdh√
Dh

∫
S

f · P(Rh)Wh

(
0
vh

)
dx′ + O

(
h2d3

h
Dh

,
hd2

h√
Dh

)
.

We denote by v̄ and ū the limits of vh and uh, respectively. Note that by The-
orem 3.1.3–(i), (ū, v̄) ∈ Blin

iso. Since by definition D−1
h Eh(yh) → 1, passing to the

limit we get by Theorem 3.1.3–(ii)

lim inf
h→0

1
Dh

(Jh(yh) + h2F(P(Rh)))

= 1 −
∫

S
f · R̄

(
ū
0

)
dx′ −

∫
S

f · R̄W̄
(

0
v̄

)
dx′

−
∫

S
f · R̄W̄2

(
x′

0

)
dx′ ≥ JVK(ū, v̄, R̄, W̄) ≥ 0,

(4.13)

where the last inequality follows from (S2).
Let ŷh be the test deformation in (4.6) with v ∈ C∞(S̄) and R ∈ R. Reasoning

as in the proof of Theorem 3.1.3–(iv), we have that Eh(ŷh) = O(h4), hence

1
Dh

(Jh(ŷh) + h2F(P(Rh))) ≤ − h3

Dh

∫
S

f · R
(

0
v

)
dx′ + O

(
h4

Dh

)
= O

(
h4

Dh

)
→ 0,

where we used that F(P(Rh)) = F(R) for every R ∈ R and that RT f · e3 = 0. In
particular, by the quasi-minimizing property of yh

lim sup
h→0

1
Dh

(Jh(yh) + h2F(P(Rh))) ≤ lim sup
h→0

1
Dh

(Jh(yh)− Jh(ŷh)) = 0.

Hence, all the inequalities in (4.13) are in fact equalities, and we have EVK(ū, v̄) = 1
and JVK(ū, v̄, R̄, W̄) = 0. Since (ū, v̄) ∈ Blin

iso, this contradicts (S2).
Step 3. By the previous steps, we obtain that Eh(yh) ≤ Ch4. Define dh and Wh

as in Step 2. We prove now that dh = O(h). The argument is similar to the one
already seen. Consider the test deformation (4.6) with v ∈ C∞(S̄) and R := P(Rh).
Arguing as in the proof of Theorem 3.1.3–(iv) we have Eh(ŷh) = O(h4), thus,
expanding the exponential and recalling that F(RW) = 0 for every R ∈ R and
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W ∈ R3×3
skew

Jh(yh)− Jh(ŷh) ≥
∫

Ω
fh · ŷh dx −

∫
Ω

fh · yh dx + O(h4)

= −h2
∫

S
f · Rh

(
h2uh
hvh

)
dx′ + h2

∫
S

f · (P(Rh)− Rh)

(
x′

0

)
dx′

+ h2
∫

S
f · P(Rh)

(
0

hv

)
dx′ + O(h4)

≥ −h2d2
h

∫
S

f · P(Rh)W2
h

(
x′

0

)
dx′

+ h3
∫

S
f · (P(Rh)− Rh)

(
0
vh

)
dx′ + O(h4, h2d3

h)

≥ −h2d2
h

∫
S

f · P(Rh)W2
h

(
x′

0

)
dx′

− h3dh

∫
S

f · P(Rh)Wh

(
0
vh

)
dx′ + O(h4, h2d3

h, h3d2
h).

(4.14)

Suppose by contradiction that dh/h → +∞. Then, dividing (4.14) by h2d2
h and

passing to the limit we deduce that

0 ≥
∫

S
f · R̄W̄2

1

(
x′

0

)
dx′ > 0,

where the last inequality follows from the fact that 0 ̸= R̄W̄1 ∈ NRR̄. This provides
the desired contradiction.

Define as before
W̄ := lim

h→0

dh
h

Wh.

Finally, expanding the exponential map

1
h4 (Jh(yh) + h2F(P(Rh))) =

=
1
h4 Eh(yh)−

1
h2

∫
Ω

f · yh dx′ +
1
h2

∫
S

f · P(Rh)

(
x′

0

)
dx′

=
1
h4 Eh(yh) +

1
h2

∫
S

f · (P(Rh)− Rh)

(
x′

0

)
dx′ − 1

h2

∫
S

f · Rh

(
h2uh
hvh

)
dx′

=
1
h4 Eh(yh)−

d2
h

h2

∫
S

f · P(Rh)W2
h

(
x′

0

)
dx′ −

∫
S

f · Rh

(
uh
0

)
dx′

+
1
h

∫
S

f · (P(Rh)− Rh)

(
0
vh

)
dx′ + O

(
d3

h
h2

)

=
1
h4 Eh(yh)−

d2
h

h2

∫
S

f · P(Rh)W2
h

(
x′

0

)
dx′

−
∫

S
f · Rh

(
uh
0

)
dx′ − dh

h

∫
S

f · P(Rh)Wh

(
0
vh

)
dx′ + O

(
d3

h
h2 ,

d2
h

h

)
,
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so that

lim inf
h→0

1
h4 (Jh(yh) + h2F(P(Rh))) ≥ JVK(ū, v̄, R̄, W̄).

Let (u, v, R, W) be an admissible quadruplet. Construct a recovery sequence
(ỹh) for u and v as in Theorem 3.1.3–(iv)–(c). The sequences of rescaled displace-
ments for the recovery sequence, defined as in (3.3)–(3.4), are denoted by ũh and ṽh.
We have

JVK(ū, v̄, R̄, W̄) ≤ lim inf
h→0

1
h4 (Jh(yh) + h2F(P(Rh)))

≤ lim sup
h→0

1
h4 (inf

y
Jh(y) + h2F(P(Rh)))

≤ lim sup
h→0

1
h4 (Jh(RehW ỹh) + h2F(R)).

To conclude it is sufficient to prove that

lim sup
h→0

1
h4 (Jh(RehW ỹh) + F(R)) = JVK(u, v, R, W).

Expanding the expression of Jh we have

1
h4 (Jh(RehW ỹh) + h2F(R)) =

1
h4 Eh(RehW ỹh)−

1
h2

∫
Ω

f · RehW ỹh dx

+
1
h2

∫
S

f · R
(

x′

0

)
dx′

=
1
h4 Eh(ỹh)−

1
h2

∫
S

f · RehW
(

h2ũh
hṽh

)
dx′ +

1
h2

∫
S

f · (R − RehW)

(
x′

0

)
dx′

=
1
h4 Eh(ỹh)−

∫
S

f · RehW
(

ũh
0

)
dx′ −

∫
S

f · RW
(

0
ṽh

)
dx′

−
∫

S
f · RW2

(
x′

0

)
dx′ + O(h) → JVK(u, v, R, W),

ending the proof of the minimality.

We conclude the section by proving Theorem 4.1.4.

Proof of Theorem 4.1.4. Suppose by contradiction that there exists an admissible
quadruplet (ū, v̄, R̄, W̄) such that (ū, v̄) ∈ Blin

iso and JVK(ū, v̄, R̄, W̄) < 0. Let δ > 0
and ṽ ∈ C∞(S̄) such that ∥v̄ − ṽ∥W2,2 ≤ δ. Let 1 ≫ ε > 0. By Theorem 2.2.9, there
is uε ∈ W2,2(S; R2) such that

yε(x′) :=
(

x′ + ε2uε

εṽ

)
is an isometric immersion and

∥uε∥W2,2 ≤ C
(
∥∇′ṽ∥L∞∥(∇′)2ṽ∥L2 + ∥∇′ṽ∥2

L2

)
.
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It follows that along a non-relabelled subsequence uε ⇀ u in W2,2(S; R2) for some
u ∈ W2,2(S; R2). Moreover, since ∇′yT

ε ∇′yε = Id, we have

0 = ε2
(
∇′uT

ε +∇′uε +∇′ṽ ⊗∇′ṽ
)
+ o(ε2),

where o(ε2) has to be intended in the L2 sense. Dividing by ε2 and passing to the
limit we deduce that (u, ṽ) ∈ Blin

iso. Moreover,

sym(∇′u −∇′ū) = 2(∇′ṽ ⊗∇′ṽ −∇′v̄ ⊗∇′v̄)

= 2(∇′(ṽ − v̄)⊗∇′ṽ −∇′v̄ ⊗∇′(v̄ − ṽ)).

Hence, by Korn’s inequality, there exists A ∈ R2×2
skew and η ∈ R2 such that

∥u − ū − Ax′ − η∥L2 ≤ Cδ. (4.15)

Consider the deformation

ȳε(x′) := R̄eεW̄yε ∈ Aiso.

We have

∇′ȳε = R̄eεW̄
((

e1 e2
)
+

(
ε2∇′uε

ε∇′ṽ

))
and

νε = ∂1ȳε ∧ ∂2ȳε = R̄eεW̄
(

e3 − ε

(
∇′ṽT

0

))
+ O(ε2).

It follows that

∇′νε = −εR̄eεW̄
(
(∇′)2ṽ

0

)
+ O(ε2)

and
(∇′ȳε)

T∇′νε = −ε(∇′)2ṽ + O(ε2).

Thus, by condition (S1),

0 ≤ JK(ȳε) =
∫

S
Q̄((∇′ȳε)

T∇′νε) dx′ −
∫

S
f · ȳε dx′

= ε2
∫

S
Q̄((∇′)2ṽ) dx′ −

∫
S

f · R̄eεW̄
(

x′

0

)
dx′ − ε

∫
S

f · R̄eεW̄
(

0
ṽ

)
dx′

− ε2
∫

S
f · R̄eεW̄

(
uε

0

)
dx′ + o(ε2).

By Theorem 4.1.2 we have R̄T f · e3 = 0. Expanding the exponential around the
identity and recalling that F(R̄W) = 0 for every W ∈ R3×3

skew, we get

0 ≤ JK(ȳε) ≤ ε2
∫

S
Q̄((∇′)2ṽ) dx′ − F(R̄)− ε2

∫
S

f · R̄(W̄)2
(

x′

0

)
dx′

− ε2
∫

S
f · R̄W̄

(
0
ṽ

)
dx′ − ε2

∫
S

f · R̄
(

uε

0

)
dx′ + o(ε2).
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Dividing by ε2 and using the fact that F(R̄) ≥ 0 by Lemma 2.2.24, passing to the
limit we deduce that 0 ≤ JVK(u, ṽ, R̄, W̄). Hence, by definition of ṽ and (4.15) we
get

0 ≤ JVK(ū, v̄, R̄, W̄) +
∫

S
f · R̄

(
Ax′ + η

0

)
dx′ + Cδ = JVK(ū, v̄, R̄, W̄) + Cδ,

where in the last equality we have used (4.2) and the fact that F(R̄W) = 0 for every
W ∈ R3×3

skew. Since δ is arbitrary we reach a contradiction.
We now prove that (S2) holds for JVK

ε . Suppose that there is an admissible
quadruplet (ū, v̄, R̄, W̄) such that (ū, v̄) ∈ Blin

iso and JVK
ε (ū, v̄, R̄, W̄) ≤ 0 for some

ε > 0. We show that v̄ is affine. Let

K :=
∫

S
f · R̄

(
ū
0

)
dx′ +

∫
S

f · R̄W̄
(

0
v̄

)
dx′ +

∫
S

R̄(W̄)2
(

x′

0

)
dx′.

If K ≤ 0, since

0 ≥ JVK
ε (ū, v̄, R̄, W̄) = EVK(ū, v̄)− (1 − ε)K ≥ EVK(ū, v̄),

we get that EVK(ū, v̄) = 0, thus, v̄ is affine. Conversely, if K > 0 we deduce that

JVK(ū, v̄, R̄, W̄) = JVK
ε (ū, v̄, R̄, W̄)− εK < 0,

which gives a contradiction.

4.3 Attainment of the infimum of JVK

In this last section, we prove Theorem 4.1.5. The stability condition (S2) assures
that all configurations in Blin

iso with zero total energy have zero Von Kármán’s elastic
energy, i.e., v is affine. However, we do not expect that all affine functions have
zero total energy, unless f = 0. In the following series of results, we study the
specific structure of such affine minimizers. We recall that we assume f not to be
identically zero. Given an optimal rotation R ∈ R, in the following results we
often use the coefficients a(R), b(R), and c(R) as defined in (2.21)–(2.23).

Proposition 4.3.1. Suppose that (S2) and (C) hold, and dimR = 1. Let (u, v, R, W) be
an admissible quadruplet such that (u, v) ∈ Blin

iso and JVK(u, v, R, W) = 0. Then W = 0
and there are λ, δ ∈ R, η ∈ R2, and A ∈ R2×2

skew such that, if a(R) > 0, then

v(x′) = −λ
c(R)
a(R)

x1 + λx2 + δ,

u(x′) = −λ2

2


b(R)
a(R)

x1 −
c(R)
a(R)

x2

− c(R)
a(R)

x1 + x2

+ Ax′ + η,
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whereas, if b(R) > 0, then

v(x′) = λx1 − λ
c(R)
b(R)

x2 + δ,

u(x′) = −λ2

2

 x1 −
c(R)
b(R)

x2

− c(R)
b(R)

x1 +
a(R)
b(R)

x2

+ Ax′ + η.

Proof. The stability condition (S2) implies that v = λ1x1 + λ2x2 + δ. Since (u, v) ∈
Blin

iso, we deduce that

u(x′) = −1
2

(
λ2

1 λ1λ2
λ1λ2 λ2

2

)(
x1
x2

)
+ Ax′ + η,

for some η ∈ R2 and A ∈ R2×2
skew. Now for any Ā ∈ R2×2

skew, η̄ ∈ R2, and δ̄ ∈ R we
have

JVK(u + Āx′ + η̄, v + δ̄, R, W) = JVK(u, v, R, W).

This follows from assumption (4.2)and the fact that F(RW) = 0 for any W ∈ R3×3
skew.

In particular, we can suppose A, δ, and η to be zero.
Suppose a(R) ̸= 0 (the proof for the case b(R) ̸= 0 is analogous). We write a, b, c

in place of a(R), b(R), c(R) in order to streamline the exposition. By Corollary 2.2.27
in this case W is of the form

W =


0 W12 W13

−W12 0
c
a

W13

−W13 − c
a

W13 0

 .

Let us define P(W) := F(RW2) and Jmin := JVK(u, v, R, W). With some simple
expansion (recall that ab − c2 = 0 by Proposition 2.2.26, since f ̸= 0) we have

Jmin =
1
2

∫
S

f · R

λ2
1x1 + λ1λ2x2

λ1λ2x1 + λ2
2x2

0

 dx′

−
∫

S
f · R

 0 W12 W13
−W12 0 c

a W13
−W13 − c

a W13 0

( 0
λ1x1 + λ2x2

)
dx′ − P(W)

=
1
2
(λ2

1a + 2λ1λ2c + λ2
2b)− λ1W13(a + b)− λ2W13c

(
1 +

b
a

)
− P(W).

If we define

M :=
(

a c
c b

)
, B := W13

(
a + b

c
(

1 + b
a

)) , Λ :=
(

λ1
λ2

)
,

then we have
Jmin =

1
2

ΛT MΛ − BΛ − P(W).
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By Lemma 2.2.25 and Proposition 2.2.26 M is positive semidefinite and by (S2) Λ
is a minimizer of the map

z 7→ 1
2

zT Mz − Bz − P(W).

Thus, MΛ = B. Solving this system one easily gets that

λ1 = − c
a

λ2 + W13

(
1 +

b
a

)
.

To conclude we just need to prove that W = 0. Observe that

(W2)′ = −

W2
12 + W2

13
c
a

W2
13

c
a

W2
13 W2

12 +
b
a

W2
13

 .

Thus, by definition of P(W),

P(W) = −(W2
12 + W2

13)a − 2bW2
13 − bW2

12 −
b2

a
W2

13.

Substituting the expression of λ1 and P(W) in Jmin we get

Jmin = W2
12(a + b) + W2

13
1
2a

(a + b)2,

so that, since a + b > 0 and Jmin = 0, we deduce W = 0.

To simplify the exposition, given f such that RT f · e3 = 0 for every R ∈ R let
us define

VR :=



{
v ∈ W2,2(S) : v(x′) = −λ

c(R)
a(R)

x1 + λx2, λ ∈ R

}
if a(R) ̸= 0,

{
v ∈ W2,2(S) : v(x′) = λx1 − λ

c(R)
b(R)

x2, λ ∈ R

}
if b(R) ̸= 0,

UR :=
{

u ∈ W1,2(S; R2) : u(x′) = −1
2
(∇′v ⊗∇′v)x′, v ∈ VR

}
.

Lemma 4.3.2. Suppose RT f · e3 = 0 for every R ∈ R and dimR = 1. Let R ∈ R.
Then ∫

S
f · R

(
u
0

)
dx′ = 0,

for every u ∈ UR.

Proof. Let u ∈ UR and v ∈ VR be such that u(x′) = −(∇′v ⊗∇′v)x′/2. By (2.2) it
is sufficient to prove that ∇′v ⊗∇′v = −(W2)′ for some W ∈ TRR.

Suppose a(R) ̸= 0. Then

v(x′) = −λ
c(R)
a(R)

x1 + λx2
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for some λ ∈ R, so

∇′v ⊗∇′v = λ2

 b(R)
a(R) − c(R)

a(R)

− c(R)
a(R) 1

 ,

where we used Proposition 2.2.26. Then, defining

W := λ


0 0 c(R)

a(R)
0 0 −1

− c(R)
a(R) 1 0

 ,

we easily get ∇′v ⊗∇′v = −(W2)′ and W ∈ TRR by Proposition 2.2.26. The case
b(R) ̸= 0 can be treated similarly.

Lemma 4.3.3. Suppose that RT f · e3 = 0 for every R ∈ R and dimR = 1. Let R ∈ R
and v ∈ VR. Then for any v̄ ∈ W2,2(S) there is ξ ∈ W1,2(S; R2) such that

∇′ξT +∇′ξ +∇′v̄ ⊗∇′v +∇′v ⊗∇′v̄ = 0

and ∫
S

f · R
(

ξ
0

)
dx′ = 0.

Proof. Suppose a(R) ̸= 0 and let λ ∈ R be such that

v(x′) = −λ
c(R)
a(R)

x1 + λx2.

For v̄ ∈ W2,2(S) it is sufficient to define

ξ(x′) := λv̄(x′)

(
− c(R)

a(R)
1

)
.

Note that

(
ξ
0

)
= λW

0
0
v̄

 with W :=


0 0 − c(R)

a(R)
0 0 1

c(R)
a(R) −1 0

 ∈ TRR

by Proposition 2.2.26. In particular,∫
S

f · R
(

ξ
0

)
dx′ = λ

∫
S

f · RW
(

0
v̄

)
dx′. (4.16)

Define the map Φ(t) = RetW for t ∈ R. By (2.4), Φ(t) ∈ R for any t ∈ R, therefore∫
S

f · Φ(t)
(

0
v̄

)
dx′ = 0 ∀ t ∈ R,

since Φ(t)T f · e3 = 0. Differentiating with respect to t at t = 0, we deduce∫
S

f · RW
(

0
v̄

)
dx′ = 0,

which gives the thesis by (4.16).
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Having all the previous results at our disposal we can show that JVK enjoys
some invariance properties.

Proposition 4.3.4. Suppose RT f · e3 = 0 for every R ∈ R and dimR = 1. Let v̄ ∈ VR
and ū ∈ UR be such that

∇′ūT +∇′ū +∇′v̄ ⊗∇′v̄ = 0.

Then JVK(u + ū + ξ, v + v̄, R, W) = JVK(u, v, R, W) for every admissible quadruplet
(u, v, R, W), where ξ is defined as in Lemma 4.3.3.

Proof. Since v is affine we immediately have that (∇′)2(v+ v̄) = (∇′)2v. Moreover,
by definition of ξ

(∇′(u + ū + ξ))T +∇′(u + ū + ξ) +∇′(v + v̄)⊗∇′(v + v̄)

= (∇′u)T +∇′u +∇′v ⊗∇′v.

By Lemmas 4.3.2 and 4.3.3, to conclude we just need to show that∫
S

f · RW
(

0
v̄

)
dx′ = 0.

This easily follows from the specific structure of v̄. Indeed, suppose a(R) ̸= 0 and
let λ ∈ R be such that

v̄(x′) = −λ
c(R)
a(R)

x1 + λx2.

Then∫
S

f · RW
(

0
v̄

)
dx′ = λ

(
−W13c(R) + W13c(R)− W23

c2(R)
a(R)

+ W23b(R)
)

= λ

(
−W23

c2(R)
a(R)

+ W23b(R)
)
= 0,

since a(R)b(R) = c2(R) by Proposition 2.2.26.

We are finally ready to give the proof of Theorem 4.1.5.

Proof of Theorem 4.1.5. Let (un, vn, Rn, Wn) be a minimizing sequence for JVK. Let
PV

n be the projection of W2,2(S) onto VRn . By Proposition 4.3.4 and the fact that for
every A ∈ R2×2

skew, η ∈ R2, and δ ∈ R

JVK(un + Ax′ + η, vn + δ, Rn, Wn) = JVK(un, vn, Rn, Wn)

we can suppose that for all n ∈ N

(i)
∫

S
un dx′ = 0,

(ii)
∫

S
vn dx′ = 0,

(iii) PV
n (vn) = 0,
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(iv)
∫

S
skew(∇′un) dx′ = 0.

Up to a subsequence, we can always assume that Rn → R ∈ R.
Assume first that

∥un∥W1,2 + ∥vn∥2
W2,2 + |Wn|2 ≤ C.

Then, up to a subsequence we have un ⇀ u in W1,2(S; R2), vn ⇀ v in W2,2(S)
and Wn → W with RW ∈ NRR. By lower semicontinuity of JVK we deduce that
(u, v, R, W) is a minimizer of JVK.

Suppose now by contradiction that

∥un∥W1,2 + ∥vn∥2
W2,2 + |Wn|2 = γ2

n → +∞

and define ūn := γ−2
n un, v̄n := γ−1

n vn and W̄n := γ−1
n Wn. Then, up to a sub-

sequence, we have ūn ⇀ ū in W1,2(S; R2), v̄n ⇀ v̄ in W2,2(S) and W̄n → W̄ with
RW̄ ∈ NRR. Since JVK(un, vn, Rn, Wn) ≤ C, we have

C ≥ γ4
n

∫
S

Q̄((∇′ūn)
T +∇′ūn +∇′v̄n ⊗∇′v̄n) dx′ + γ2

n

∫
S

Q̄((∇′)2v̄n) dx′

− γ2
n

∫
S

f · Rn

(
ūn
0

)
dx′ − γ2

n

∫
S

f · RnW̄n

(
0
v̄n

)
dx′

− γ2
n

∫
S

f · Rn(W̄n)
2
(

x′

0

)
dx′.

(4.17)

Dividing by γ4
n we get by the coercivity of Q̄

∥(∇′ūn)
T +∇′ūn +∇′v̄n ⊗∇′v̄n∥L2 ≤ C

γn
. (4.18)

Passing to the limit we deduce that (ū, v̄) ∈ Blin
iso. Moreover, dividing (4.17) by γ2

n
and passing to the limit we get by lower semicontinuity that 0 ≥ JVK(ū, v̄, R, W̄).
The stability condition (S2) implies that JVK(ū, v̄, R, W̄) is zero and v̄ is affine. By
Proposition 4.3.1 and the properties (i)–(iv) we deduce that ū = 0, v̄ = 0 and
W̄ = 0. If we prove that ūn and v̄n are strongly converging, then the proof is
concluded since we would have

∥ū∥W1,2 + ∥v̄∥2
W2,2 + |W̄|2 = 1.

Dividing (4.17) by γ2
n and passing to the limit we have

0 ≥ lim sup
n→∞

∫
S

Q̄((∇′)2v̄n) dx′.

In particular, by the coercivity of Q (see Lemma 2.2.6) we get (∇′)2v̄n → 0 in
L2(S; R2×2), giving the strong convergence of v̄n in W2,2(S). By (4.18) we have that
sym(∇′ūn) → 0 in L2(S; R2×2). By (iv) we can apply Korn’s inequality to deduce
that ūn → 0 strongly in W1,2(S; R2), concluding the proof of the first part.
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Suppose now that (S2) fails. Let (v̄, ū) ∈ Blin
iso such that for some R̄ ∈ R and

R̄W̄ ∈ NRR̄ either JVK(ȳ, v̄, R̄, W̄) < 0 or JVK(ȳ, v̄, R̄, W̄) = 0 and v̄ is not affine. In
any of these two cases, we have

−
∫

S
f · R̄

(
ū
0

)
dx′ −

∫
S

f · R̄W̄
(

0
v̄

)
dx′ −

∫
S

f · R̄W̄2
(

x′

0

)
dx′ < 0.

In particular we have that JVK
ε (ū, v̄, R̄, W̄) < 0 for every choice of ε > 0. Since for

every γ > 0 we have that (γ2ū, γv̄) ∈ Blin
iso and

JVK
ε (γ2ū, γv̄, R̄, γW̄) = γ2

∫
S

Q̄((∇′)2v) dx′ − γ2(1 + ε)
∫

S
f · R̄

(
ū
0

)
dx′

− γ2(1 + ε)
∫

S
f · R̄W̄

(
0
v̄

)
dx′ − γ2(1 + ε)

∫
S

f · R̄W̄2
(

x′

0

)
dx′,

we deduce that

lim
γ→+∞

1
γ2 JVK

ε (γ2ū, γv̄, R̄, γW̄) = JVK
ε (ū, v̄, R̄, W̄) < 0.

This implies that
lim

γ→+∞
JVK
ε (γ2ū, γv̄, R̄, γW̄) = −∞,

as desired.

Remark 4.3.5. From the proof it follows that inf JVK = −∞ if there is an admissible
quadruplet (ū, v̄, R̄, W̄) such that (ū, v̄) ∈ Blin

iso and JVK(ū, v̄, R̄, W̄) < 0. In this case,
one can repeat the same argument with ε = 0.

Remark 4.3.6. We give a short sketch of the proof of Theorem 4.1.5 in the case
dimR = 0. Firstly, we can assume without loss of generality that R = {Id}.
Reasoning as in Proposition 2.2.26, since NRId = R3×3

skew, one can show that ab −
c2 > 0, where we have written a, b, and c in place of a(Id), b(Id), and c(Id). Then,
arguing as in Proposition 4.3.1, one can prove that, when (S2) holds, any minimizer
(u, v, R, W) of JVK with (u, v) ∈ Blin

iso is of the form (η, δ, Id, 0), with η ∈ R2 and
δ ∈ R. Note that, in this setting, stability condition (S2) basically reduces to the
linearized stability of [LM09] without imposing any additional Dirichlet condition on
the boundary. Finally, one can argue as in the proof of Theorem 4.1.5 to conclude.





5
A hierarchy of models

for ribbons

5.1 Assumptions and main results

In this chapter, S represents the mid-line of a rod, so that S := (0, L), with L > 0.
The elastic energy density takes the form W(M) := |MT M − Id |2, for M ∈ R3×2.
Note that W satisfies both (RG) and (FI). The total energy is defined as

Eh(y) :=
∫

Ω
W(∇hy) dx + δ2

h

∫
Ω
|∇2

hy|2 dx, y ∈ W2,2(Ω; R3).

Here, (δh) ⊂ R is a sequence such that δh ≪ h as h → 0. Physically, h and δh
represent the thickness and the width of a ribbon, respectively. They are both small
with respect to the length L, albeit on a different scale.

In this chapter, we study the Γ-convergence of various rescalings of Eh. Precisely,
we compute the Γ-limit of

Eα
h := δ−α

h Eh, α ≥ 2.

As in the previous chapters, we set γ := α/2.
In the first part, we treat the Kirchhoff’s regime α = 2. We prove that, for

sequences (yh) with bounded energy, ∇yyh →
(
d1 d2

)
in L2(Ω, R3×2), where d1

and d2 are independent of x2 and define a Frenet–Serrin frame for which ∂1d1 · d2 =
0. Since d1 and d2 can be thought as being induced by a deformation y of the mid-
line S, the constraint ∂1d1 · d2 = 0 is a necessary condition for y being the restriction
to S of an isometric immersion of Ωh, at least for h small enough. We show that E2

h
Γ-converge to

IK(d1, d2) :=
∫ L

0

(
|∂1d1|2 + 2|∂2d2|2

)
dx if h−2δh → +∞,

IS(d1, d2) :=
∫ L

0

(
|∂1d1|2 + 2|∂2d2|2 + Qs(∂1d1, ∂1d2)

)
dx if h−2δh → 0,

103
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where
Qs(u, v) := min

ξ∈R3

{
|ξ|2 + 2|u · ξ − v · v|

}
. (5.1)

The asymptotic behaviour of h−2δh is related to the convergence of det(∇2
hyh), that,

roughly speaking, represents the Gauss’ curvature. Precisely, when h−2δh → 0,
we have det(∇hyh)

∗
⇀ 0 in the sense of measures and the term Qs emerges as a

relaxation of this constraint. The case δh ∼ h2 is still open and in the next sections
we explain some of the difficulties in the study of this regime.

Then, we move to the so-called Von Kármán’s regimes, corresponding to α > 2.
For a sequence of deformations (yh) with bounded energy, we identify a displace-
ment u := (u1, u2, u3), where each component is the limit of a suitable rescaling of
the displacement at the level h. While u2 and u3 are independent of x2, u1—the
displacement in the x1-direction—is affine in x2 and has the form

u1 = ξ − x2∂1u2, (5.2)

for some ξ ∈ W1,2(0, L). Moreover, we show that a suitable rescaling of h−1∂2yh,3
converges to a function θ, depending only on x1 and representing the twist of the
ribbon.

We prove that Eα
h Γ-converge to

IVK(u1, u3, θ) :=
∫ L

0

(
|∂11u3|2 + 2|∂1θ|2

)
dx +

∫
Ω
|(∂1u3)

2 + 2∂1u1|2 dx if α = 4,

ILVK(u1, u3, θ) :=
∫ L

0

(
|∂11u3|2 + 2|∂1θ|2

)
dx + 4

∫
Ω
|∂1u1|2 dx if α > 4.

Note that both IVK and ILVK can be equivalently rewritten in terms of ξ, u2, u3,
and θ.

As in Chapters 3 and 4, when 2 < α < 4 some constraint relating the in-plane
and out-of-plane displacement appears at the limit. This is also the case here,
where we have that

(∂1u3)
2 + 2∂1u1 = 0. (5.3)

Note that, by (5.2)–(5.3) it follows that ∂1u2 = 0 and u1 is independent of x2.
Differently from the analogous constraint for plates, given u3 ∈ W2,2(0, L), there
always exists u1 such that (5.3) is satisfied.

When 2 < α < 4 and h−2δ
2−γ
h → +∞, we show that Eα

h Γ-converge to

ICVK(u3, θ) :=
∫ L

0

(
|∂11u3|2 + 2|∂1θ|2

)
dx.

Instead, when 2 < α < 4 and h−2δ
2−γ
h → 0, we have the Γ-convergence to

IVKS(u3, θ) :=
∫ L

0

(
|∂11u3|2 + 2|∂1θ|2 + Qs(∂11u3, ∂1θ)

)
dx,

where, with some abuse of notation we still denote by Qs the function

Qs(a, b) := min
c∈R

{
c2 + 2|ac − b2|

}
. (5.4)

As for the Kirchhoff’s case, the behaviour of h−2δ
2−γ
h is linked to the convergence

of a suitable rescaling of the Gauss’ curvature. The case δ
2−γ
h ∼ h2 is still open and

presents analogous difficulties to the case α = 2 and δh ∼ h2.
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5.2 The Kirchhoff’s regime

In this section we first prove the compactness and then move to the Γ-convergence
result for α = 2.

5.2.1 Compactness

Theorem 5.2.1. Let (yh) ⊂ W2,2(Ω; R3) be a sequence such that E2
h(yh) ≤ C. Then,

there are functions y ∈ W2,2(0, L; R3), d2 ∈ W1,2(0, L; R3) and ρ ∈ L2(Ω; R3) such
that, up to a subsequence and to translation,

(i) yh ⇀ y in W2,2(Ω; R3),

(ii) h−1∂2yh ⇀ d2 in W1,2(Ω; R3),

(iii) h−2∂2
2yh ⇀ ρ in L2(Ω; R3).

Moreover, d1 := ∂1y and d2 are unitary and orthogonal almost everywhere. Lastly, ∂1d1,
∂1d2, and ρ are almost everywhere parallel to d3 := d1 ∧ d2.

Proof. By the boundedness of the energy, we immediately deduce (up to a sub-
sequence) the weak convergences of the rescaled gradient and Hessian

(a) ∇2
hyh ⇀ B in L2(Ω; R3×2×2),

(b) ∇hyh ⇀ A in L4(Ω; R3×2).

Indeed, the rescaled gradient is bounded in L4 given that

|MT M| ≥ 1√
2
|M|2 ∀ M ∈ R3×2.

We call d1 and d2 the columns of A. Up to translation, we have that yh ⇀ y in
W2,2(Ω; R3). Clearly, since ∂2yh → 0 in W1,2(Ω; R3), the function y is independent
of x2. Moreover, ∇hyh ⇀ A in W1,2(Ω; R3×2) so that the convergence ∇hyh → A is
strong in L4(Ω; R3×2). This, combined with the strong convergence ∇hyT

h ∇hyh →
Id in L2(Ω; R2×2) following by the energy, allow us to deduce that AT A = Id so
that d1 and d2 are unitary and orthogonal almost everywhere. Since h−1∂2

2yh → 0
strongly in L2(Ω; R3) we get ∂2d2 = 0, i.e., d2 is independent of x2.

To simplify the notation, we will write the tensor B as a 2 × 2 matrix whose
entries are R3 vectors. We have already deduced that B11 = ∂2

1y = ∂1d1 and that
B12 = B21 = ∂1d2. Denote with ρ the vector B22. We now show that ∂1d1, ∂1d2,
and ρ are orthogonal to both d1 and d2. Observe that

1
h
∥∂2(∇hyT

h ∇hyh − Id)∥(W1,2)∗ ≤ C
1
h
∥∇hyT

h ∇hyh − Id ∥L2 ≤ C
δh
h

→ 0.

Moreover,

1
h

∂2(∇hyT
h ∇hyh − Id)

=
1
h

[(
(∂12yh)

T

h−1(∂22yh)
T

) (
∂1yh h−1∂2yh

)
+

(
(∂1yh)

T

h−1(∂2yh)
T

) (
∂12yh h−1∂22yh

)]
.
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Passing to the limit we deduce that(
(∂1d2)

T

ρT

) (
d1 d2

)
+

(
dT

1
dT

2

) (
∂1d2 ρ

)
= 0. (5.5)

Componentwise, (5.5) gives

2∂1d2 · d1 = 0,

∂1d2 · d2 + d1 · ρ = 0,

2ρ · d2 = 0.

Hence, ∂1d2 is orthogonal to d1 and ρ is orthogonal to d2. Differentiating |d2|2 = 1,
we deduce that ∂1d2 · d2 = 0, that gives both the desired result for both d2 and ρ.
Differentiating the identity d1 · d2 = 0 and d1 · d1 = 1 we get

2d1 · ∂1d1 = 0,

∂1d1 · d2 + d1 · ∂1d2 = 0,

which gives the orthogonality of ∂1d1 to both d1 and d2.

The triplet (d1, d2, d3) is a Frenet–Serret frame representing a deformed config-
uration of the mid-line. The extra condition that ∂1d1 and ∂d2 are both parallel to
d3 ensures that this frame arises as the restriction on the mid-line of an isometry of
a thin strip.

To simplify the notation we introduce the set

FK ⊂ W2,2(0, L; R3)× W1,2(0, L; R3),

representing the admissible Frenet–Serret frames. Precisely, we say that (y, d2) ∈
FK if, setting d1 := ∂1y,

(i) d1 · d1 = d2 · d2 = 1 a.e. in (0, L),

(ii) d1 · d2 = 0 a.e. in (0, L),

(iii) ∂1d1 · d2 = ∂1d2 · d1 = 0 a.e. in (0, L).

Moreover, given a sequence of deformations (yh) ⊂ W2,2(Ω; R3) and a couple

(y, d2) ∈ FK, we say that yh
FK−→ (y, d2) if

(i) yh ⇀ y in W2,2(Ω; R3),

(ii) h−1∂2yh ⇀ d2 in W1,2(Ω; R3).

We compute the Γ-convergence of E2
h with respect to the above convergence,

that is the natural one emerging from the boundedness of the energy.
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5.2.2 Γ-convergence for h2 ≪ δh ≪ h

Theorem 5.2.2. Suppose that h2 ≪ δh ≪ h. Then for any sequence of deformations

(yh) ⊂ W2,2(Ω; R3) such that yh
FK−→ (y, d2) for some (y, d2) ∈ FK we have

lim inf
h→0+

E2
h(yh) ≥ IK(d1, d2), (5.6)

where d1 := ∂1y. Moreover, for any choice of (y, d2) ∈ FK there is a sequence of

deformations (yh) ⊂ W2,2(Ω; R3) such that yh
FK−→ (y, d2) and

lim
h→0+

E2
h(yh) = IK(d1, d2),

where d1 := ∂1y.

Proof. We simply have

E2
h(yh) ≥

∫
Ω
|∇2

hyh|2 dx ≥
∫

Ω

(
|∂11yh|2 + 2|∂12yh|2

)
dx.

Passing to the limit we deduce (5.6) by lower semicontinuity. Let (y, d2) ∈ FK ∩
(C∞([0, L]; R3))2. We define

yh := y + hx2d2.

Clearly, yh ⇀ y in W2,2(Ω; R3). We get

∇hyh =
(
d1 d2

)
+ hx2

(
∂1d2 0

)
,

where d1 := ∂1y. In particular, h−1∂2yh ⇀ d2, showing that yh
FK−→ (y, d2). Com-

puting the elastic energy density term we get

∇T
h yh∇hyh − Id = O(h2).

Differentiating again we obtain

∇2
hyh =

(
∂1d1 ∂1d2
∂1d2 0

)
+ o(h).

Thus, since h4/δ2
h → 0, passing to the limit in the total energy we get

E2
h(yh) →

∫ L

0
|∂1d1|2 dx + 2

∫ L

0
|∂1d2|2 dx = IK(d1, d2).

To conclude for a general pair (y, d2) ∈ FK we shall apply a density argument. It
is enough to prove that for every couple (y, d2) ∈ FK there is a sequence

(yn, dn
2 ) ⊂ (C∞([0, L]; R3))2 ∩ FK

such that yn → y in W2,2(0, L; R3) and dn
2 → d2 in W1,2(0, L; R3). Let (y, d2) ∈ FK.

Define d1 := ∂1y, κ := ∂1d1 · d3, and τ := ∂1d2 · d3, where d3 := d1 ∧ d2. By density,
there exist two sequences

(τn), (κn) ⊂ C∞([0, L])



108 CHAPTER 5. A HIERARCHY OF MODELS FOR RIBBONS

such that τn → τ and κn → κ in L2(0, L). Let

An :=

 0 0 −κn
0 0 −τn
κn τn 0

 .

Denote by Rn ∈ C∞([0, L]) the unique global solution of the Cauchy’s problem{
∂1X = XAn in [0, L],

X(0) =
(

d1(0) d2(0) d3(0)
)

.
(5.7)

Note that Rn(0) ∈ SO(3) and that

∂1(RnRT
n ) = ∂1RnRT

n + Rn(∂1Rn)
T = (Rn AnRT

n + Rn AT
n RT

n ) = 0,

that is Rn ∈ SO(3) everywhere in [0, L]. We define

yn(t) := y(0) +
∫ t

0
Rn(s)e1 ds,

dn
2 (t) := Rn(t)e2.

By construction, we have that

(yn, dn
2 ) ∈ (C∞(0, L; R3))2 ∩ FK.

Indeed, defining dn
1 := ∂1yn, we get

∂1dn
1 · dn

2 = ∂1Rne1 · Rne2 = κnRne1 · Rne2 = 0,

dn
1 · ∂1dn

2 = Rne1 · ∂1Rne2 = τnRne1 · Rne2 = 0.

Clearly, up to subsequences, Rn ⇀ R in W1,2(0, L; R3×3). Moreover, passing to the
limit in (5.7), we deduce that R is the unique solution of{

∂1X = XA in [0, L],

X(0) =
(

d1(0) d2(0) d3(0)
)

.
(5.8)

with

A :=

0 0 −κ
0 0 −τ
κ τ 0

 .

In particular, Rn → R in W1,2(0, L; R3 × 3). Since the matrix(
d1 d2 d3

)
is a solution of (5.8), we conclude that

R =
(
d1 d2 d3

)
,

giving the convergence of dn
2 . The convergence of yn follows from its definition.
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5.2.3 Γ-convergence for δh ≪ h2

When δh ≪ h2, we cannot use the same recovery sequence of the proof of The-
orem 5.2.2. Indeed, the term involving the elastic energy density W would blow
up. The main difference is that, as we show now, the Gauss’ curvature converge to
0 in the sense of measures.

Lemma 5.2.3. Suppose δh ≪ h2 and let (yh) ⊂ W2,2(Ω; R3) be a sequence of deforma-
tions such that E2

h(yh) ≤ C. Then

det(∇2
hyh)

∗
⇀ 0 in Mb(Ω).

Proof. Let Gh := ∇hyT
h ∇hyh − Id. Observe that, in the sense of distributions, it

holds that

∂11Gh
22 +

1
h2 ∂22Gh

11 +
2
h

∂12Gh
12 = −2 det(∇2

hyh). (5.9)

Given that ∥Gh∥L2 ≤ Cδh ≪ Ch2 we deduce that det(∇2
hyh) → 0 in the sense of

distributions. By the energy, we can also bound the L1 norm of the determinant
so that, up to a subsequence, we have the weak-star convergence det(∇2

hyh)
∗
⇀ µ

in Mb(Ω). By the uniqueness of the limit, we conclude that µ = 0, finishing the
proof.

To construct the recovery sequences, we resort to a careful construction of
isometries yh of the thin strip Ωh, for which det(∇2

hyh) ≡ 0 and to a relaxation
argument. We start with a simple observation regarding the norm of the Hessian
of an isometric immersion and a preliminary lemma that justifies the ambiguous
notation for Qs (see (5.1) and (5.4)).

Proposition 5.2.4. Let u ∈ W2,2
iso (Ω; R3). Then

|∇2u|2 =
2

∑
i,j=1

|∂iju · ν|2,

where ν := ∂1u ∧ ∂2u.

Proof. Differentiating the identity ∇uT∇u = Id, we deduce that

∂11u · ∂1u = 0,

∂12u · ∂1u = 0,

∂11u · ∂2u + ∂12u · ∂1u = 0,

∂12u · ∂2u + ∂22u · ∂1u = 0,

∂12u · ∂2u = 0,

∂22u · ∂2u = 0.

It easily follows that ∂iju is parallel to ν for every i, j = 1, 2, and the proof is
concluded.
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Lemma 5.2.5. Let (y, d2) ∈ FK and define d1 := ∂1y. Let κ := ∂1d1 · d3 and τ :=
∂1d2 · d3, where d3 := d1 ∧ d2. Then

Qs(∂1d1, ∂1d2) = Qs(κ, τ),

where we tacitly passed from Qs defined as in (5.1) to Qs defined as in (5.4).

Proof. Since both ∂1d1 and ∂1d2 are parallel to d3, and d3 is unitary, we have
|∂1d1| = |κ| and |∂1d2| = |τ|. In particular, for ξ ∈ R3,

|ξ|2 + 2|∂1d1 · ξ − ∂1d2 · ∂1d2| = |ξ · d1|2 + |ξ · d2|2 + |ξ · d3|2 + 2|κξ · d3 − τ2|.

Then, if ξ̄ is the minimizer of

ξ 7→ |ξ|2 + 2|∂1d1 · ξ − ∂1d2 · ∂1d2|,

it must be such that ξ̄ · d1 = ξ̄ · d2 = 0, and ξ̄ · d3 minimizes

c 7→ c2 + 2|κc − τ2|,

concluding the proof.

As we anticipated, the construction of the recovery sequence is based on a relax-
ation argument. The next Lemma is thus concerned with the lower semicontinuous
envelope of the map

Ψ : L2(0, L; R2×2
sym) → R, Ψ(M) :=


∫ L

0
|M|2 dx if det(M) = 0 a.e.,

+∞ otherwise,
(5.10)

with respect to the weak L2 topology (see also Remark 5.2.8).

Lemma 5.2.6. For every matrix-valued field M ∈ L2(0, L; R2×2
sym) there exists a sequence

(Mn) ⊂ L2(0, L; R2×2
sym)

such that for every n ∈ N we have det(Mn) = 0 almost everywhere on (0, L), Mn ⇀ M
in L2, and ∫ L

0
|Mn|2 dx →

∫ L

0
|M|2 dx + 2

∫ L

0
|det(M)| dx.

Moreover, the sequence Mn can be choosen of the form

Mn = λn pn ⊗ pn

for some λn ∈ C∞([0, L]) and pn ∈ C∞([0, L]; R2) with |pn| ≡ 1 and pn ̸= e2 on [0, L].

Proof. In this proof, we follow [Fre+15, Lemma 3.1] and [Fre+16, Lemma 16].
Step 1. Suppose first that M is constant and diagonal. If det(M) = 0, the result is
trivial, thus we may assume that det(M) ̸= 0. Let

θ :=
|M11|

|M11|+ |M22|
.
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Since M has nonzero determinant, θ ∈ (0, 1). Moreover

M2
11

θ
+

M2
22

1 − θ
= |M11|2 + |M22|2 + 2|M11M22| = |M|2 + 2|det(M)|. (5.11)

Let χ(x) := χ(0,θ)(x − ⌊x⌋). Now define χn ∈ L∞(0, L) as χn(x1) := χ(nx1). Since

χ is 1-periodic with average over one period given by θ, we have χn
∗
⇀ θ in

L∞(0, L). In particular, defining

Mn(x1) := χn(x1)
M11

θ
e1 ⊗ e1 + (1 − χn(x1))

M22

1 − θ
e2 ⊗ e2,

we get det(Mn) ≡ 0, Mn ⇀ M in L2, and by (5.11)

∫ L

0
|Mn|2 dx =

∫ L

0

(
χn(x1)

M2
11

θ2 + (1 − χn(x1))
M2

22
(1 − θ)2

)
dx

→
∫ L

0
|M|2 dx + 2

∫ L

0
|det(M)| dx.

If M is constant, but non diagonal, it can be diagonalized by an orthogonal
matrix Q ∈ O(2), namely QT MQ is diagonal. Construct a sequence M̃n as above
for QT MQ, and define Mn := QM̃nQT . We have that Mn ⇀ M in L2 and∫ L

0
|Mn|2 dx =

∫ L

0
|M̃n|2 dx →

∫ L

0
|QT MQ|2 dx + 2

∫ L

0
|det(QT MQ)| dx

=
∫ L

0
|M|2 dx + 2

∫ L

0
|det(M)| dx.

Step 2. Suppose now that M is piecewise constant. Then, gluing together the
construction of Step 1 on each set where M is constant, we get the desired sequence.
Step 3. For an arbitrary M ∈ L2(0, L; R2×2

sym) there is a sequence

(Mk) ⊂ L2(0, L; R2×2
sym)

of piecewise constant functions such that Mk → M in L2. For every k ∈ N we
apply Step 2, and construct sequences

(Mn,k) ⊂ L2(0, L; R2×2
sym)

such that det(Mn,k) = 0 almost everywhere, Mn,k ⇀ Mk in L2 as n → ∞, and∫ L

0
|Mn,k|2 dx n→∞−−−→

∫ L

0
|Mk|2 dx + 2

∫ L

0
|det(Mk)| dx. (5.12)

By (5.12), the matrix-valued fields Mn,k can be chosen uniformly bounded—with
respect to both n and k—in L2. Then, since the weak topology of L2 is metrizable
on balls, we conclude by a diagonal argument.

We are left to prove that the sequence we have constructed can be chosen of the
form

Mn = λn pn ⊗ pn
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for some λn ∈ C∞([0, L]) and pn ∈ C∞([0, L]; R2) with |pn| ≡ 1 and pn ̸= e2 on
[0, L].

Up to a further diagonal argument, it is enough to show that for every matrix-
valued field M ∈ L2(0, L; R2×2

sym) with det(M) ̸= 0 almost everywhere on [0, L]
there are sequences (λn) ⊂ C∞([0, L]) and (pn) ⊂ C∞([0, L]; R2) with |pn| ≡ 1
and pn ̸= e2 everywhere on [0, L] such that

λn pn ⊗ pn → M in L2(0, L; R2×2
sym).

Thus, let M ∈ L2(0, L; R2×2
sym) be such that det(M) = 0 almost everywhere. Firstly,

since M is symmetric, we have M = λp ⊗ p, where λ := Tr(M) and

p :=

{
sign(M11)Me1/|Me1| if Me1 ̸= 0,
e2 if Me1 = 0

Indeed, if Me1 = 0, then by symmetry

M =

(
0 0
0 M22

)
= M22e2 ⊗ e2

and Tr(M) = M22. If instead Me1 ̸= 0, we have

(p ⊗ p)11 =
M2

11
|Me1|2

= M11
M11

|Me1|2
,

(p ⊗ p)12 =
M11M12

|Me1|2
= M12

M11

|Me1|2
,

(p ⊗ p)22 =
M2

12
|Me1|2

= M22
M11

|Me1|2
,

and

Tr(M) = M11 + M22 = M11 +
M2

12
M11

=
|Me1|2

M11
.

Since p1 ≥ 0, the unit vector p can be expressed by means of a map

β ∈ L∞
(

0, L;
(
− π

2,
π

2

])
as

p =

(
cos(β)
sin(β)

)
.

Define
β̃n :=

( 1
n
− π

2

)
∨
(

β ∧
(π

2
− 1

n

))
.

and βn := ρn ∗ β̃n, where ρn is a standard mollifier with support contained in the
ball of radius 1/n and, with a little abuse of notation, we still denote with β̃n its
extension by zero to R. Clearly, βn ∈ C∞([0, L]) and βn ̸= π/2 on [0, L]. Moreover

|βn(x)− β(x)| ≤
∫

R
|(β̃n(y)− β(x))ρn(x − y)| dy ≤

∫ 1
n

− 1
n

|β̃n(x − y)− β(x)| dy

≤ 2
1
n2 → 0
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Thus, βn → β pointwise, and by Dominated Convergence Theorem, for every
q > 1

pn :=
(

cos(βn)
sin(βn)

)
→ p in Lq(0, L; R2).

Clearly, pn ∈ C∞([0, L]; R2), and pn ̸= e2 everywhere on [0, L]. Let (λn) ⊂
C∞([0, L]) be a sequence such that λn → λ in L2(0, L). Defining

Mn := λn pn ⊗ pn.

we conclude.

We are ready to prove the Γ-convergence result.

Theorem 5.2.7. Suppose that δh ≪ h2. Then for any sequence of deformations (yh) ⊂
W2,2(Ω; R3) such that yh

FK−→ (y, d2) for some (y, d2) ∈ FK it holds

lim inf
h→0+

E2
h(yh) ≥ IS(d1, d2), (5.13)

where d1 := ∂1y. Moreover, for any choice of (y, d2) ∈ FK there is a sequence of

deformations (yh) ⊂ W2,2(Ω; R3) such that yh
FK−→ (y, d2) and

lim
h→0+

E2
h(yh) = IS(d1, d2),

where d1 := ∂1y.

Proof. We start by proving the liminf inequality (5.13). Without loss of generality
we can suppose that E2

h(yh) ≤ C. For every φ ∈ C1
0(Ω; [0, 1]) we get

E2
h(yh) ≥

∫
Ω
|∇2

hyh|2 dx =
∫

Ω
φ
(
|∂11yh|2 + 2|h−1∂12yh|2 + |h−2∂22yh|2

)
dx

+
∫

Ω
(1 − φ)

(
|∂11yh|2 + 2|h−1∂12yh|2 + |h−2∂22yh|2

)
dx

=
∫

Ω
φ|∂11yh + h−2∂22yh|2 dx − 2

∫
Ω

φ det(∇2
hyh) dx

+
∫

Ω
(1 − φ)

(
|∂11yh − h−2∂22yh|2 + 4|h−1∂12yh|2

)
dx

+ 2
∫

Ω
(1 − φ)det(∇2

hyh) dx.

Since φ is non-negative, all the terms are lower semicontinuous with respect to
the weak convergences in L2 by convexity. By Lemma 5.2.3 and Theorem 5.2.1,
passing to the limit we deduce that

lim inf
h→0+

E2
h(yh) ≥

∫
Ω

φ|∂1d1 + ρ|2 dx +
∫

Ω
(1 − φ)

(
|∂1d1 − ρ|2 + 4|∂1d2|2

)
dx

=
∫

Ω
|B|2 dx + 2

∫
Ω

det(B) dx − 2
∫

Ω
det(B) dx,

(5.14)
where

B :=
(

∂1d1 ∂1d2
∂1d2 ρ

)
.
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Let
Ω+ := {x ∈ Ω : det(B(x)) ≥ 0}

and Ω− := Ω\Ω+. Pick a sequence (φn) ⊂ C1
0(Ω; [0, 1]) such that φn → χΩ+

almost everywhere. By Dominated Convergence Theorem, from (5.14) we deduce
that

lim inf
h→0+

E2
h(yh) ≥

∫
Ω
|B|2 dx + 2

∫
Ω+

φ det(B) dx − 2
∫

Ω−
(1 − φ)det(B) dx

=
∫

Ω
(|B|2 + 2|det(B)|) dx

≥
∫ L

0

(
|∂1d1|2 + 2|∂1d2|2 + Qs(∂1d1, ∂1d2)

)
dx = IS(d1, d2).

We move now to the recovery sequence construction. Let

(y, d2) ∈ FK ∩ (C∞([0, L]; R3))2.

Define κ := ∂1d1 · d3 and τ := ∂1d2 · d3, where d1 := ∂1y and d3 := d1 ∧ d2. For
x1 ∈ (0, L), let c(x1) ∈ R be such that

|c(x1)|2 + 2|κ(x1)c(x1)− τ2(x1)| = Qs(κ(x), τ(x)),

where Qs is defined as in (5.4). It is a simple computation to prove that

c(x1) =

{
τ2(x1)/κ(x1) if |κ(x1)| > |τ(x1)|,
κ(x1) if |κ(x1)| ≤ |τ(x1)|.

Thus, c ∈ L2(0, L). Consider the matrix-valued field

M :=
(

κ τ
τ c

)
.

By Lemma 5.2.6 there exist sequences (λn) ⊂ C∞([0, L]) and (pn) ⊂ C∞([0, L]; R2)
with |pn| ≡ 1, pn ̸= e2 everywhere on [0, L], such that, defining

Mn := λn pn ⊗ pn,

we have Mn ⇀ M and∫ L

0
|Mn|2 dx →

∫ L

0
|M|2 dx + 2

∫ L

0
|det(M)| dx =

∫ L

0
(|κ|2 + 2|τ|2 + Qs(κ, τ)) dx

Note that, since both ∂1d1 and ∂1d2 are parallel to d3 and d3 is unitary, we have
|κ| = |∂1d1| and |τ| = |∂1d2|. By Lemma 5.2.5

Qs(∂1d1, ∂1d2) = Qs(κ, τ),

where we tacitly passed from Qs defined as in (5.1) to Qs defined as in (5.4). It
follows that ∫ L

0
|Mn|2 dx → IS(d1, d2). (5.15)
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Denote by Rn ∈ C∞([0, L]) the unique global solution of the Cauchy’s problem{
∂1X = XAn in [0, L],

X(0) =
(

d1(0) d2(0) d3(0)
)

,

where

An :=

 0 0 −(Mn)11
0 0 −(Mn)12

(Mn)11 (Mn)12 0

 .

Define dn
1 := Rne1, and dn

2 := Rne2. Let

yn(x1) = y(0) +
∫ x1

0
dn

1 (s) ds.

Arguing as in the proof of Theorem 5.2.2, Rn ∈ SO(3) everywhere on [0, L] and so
(yn, dn

2 ) ∈ FK.
We are now in the position to apply Theorem 2.2.15 with p := pn, y := yn,

d2 := dn
2 , and λ := λn, up to a continuous extension on a neighbourhood of [0, L].

Thus, for some εn > 0, there exists, an isometry

un ∈ W2,2
iso (Ωεn ; R3) ∩ W1,∞(Ωεn ; R3)

satisfying (a)–(c) of Theorem 2.2.15. For h ≤ εn, we define

yn
h(x1, x2) := un(x1, hx2).

Clearly, yn
h ∈ W2,2(Ω; R3). As h → 0 we have yn

h → un(·, 0) in W2,2(Ω; R3), and
since un(x1, 0) = yn(x1) by Theorem 2.2.15–(a), we deduce yn

h → yn in W2,2(Ω; R3)
as h → 0. By Theorem 2.2.15–(b), we have that

∇hyn
h(x1, x2) = ∇un(x1, hx2) → ∇un(x1, 0) =

(
dn

1 dn
2
)

in W1,2(Ω; R3×2).

Thus, yn
h

FK−→ (yn, dn
2 ). Finally, since un is an isometric immersion, we get

(∇hyn
h)

T∇hyn
h − Id = 0. (5.16)

Then, by Theorem 2.2.15–(c) and Proposition 5.2.4, we have∫
Ω
|∇2

hyn
h |

2 dx =
∫

Ω
|∇2un(x1, hx2)|2 dx →

∫
Ω
|∇2un(x1, 0)|2 dx

=
∫

Ω
|λn(x1)pn(x1)⊗ pn(x1)|2 dx =

∫ L

0
|Mn|2 dx

that gives, in view of (5.16)

E2
h(y

n
h) →

∫ L

0
|Mn|2 dx. (5.17)

Arguing as in the proof of Theorem 5.2.2, we get that yn → y in W2,2 and dn
2 → d2

in W1,2. Thus, owing to (5.15) and (5.17), by a diagonal argument, we can extract a

sequence yh such that yh
FK−→ (y, d2) and

E2
h(yh) → IS(d1, d2),

concluding the recovery sequence construction. For a general pair (y, d2) ∈ FK we
conclude by density, arguing as in proof of Theorem 5.2.2.
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Remark 5.2.8. Owing to Lemma 5.2.6, and arguing as in the proof of the liminf
inequality, one can show that the lower semicontinuous envelope of Ψ, defined as
in (5.10), with respect to the L2 weak topology is

Ψ∗(M) :=
∫ L

0
|M|2 dx + 2

∫ L

0
|det(M)|2.

Before moving to the Von Kármán’s regime, let us give a few hints of the
main difficulties we encounter when δh ∼ h2. Arguing as in Lemma 5.2.3, one
can deduce that det(∇2

hyh)
∗
⇀ µ, for some µ ∈ Mb(Ω). By (5.9), it follows that

−2µ = ∂22g in the distributional sense, where g is the L2 weak-limit of h−2Gh
11. At

the moment we do not have a full characterization of the measures µ that can be
obtained in this process. However, preliminary calculations suggest that µ should
belong to the space Mb(0, L; L2(−1/2, 1/2)).

Furthermore, arguing as in the proof of Theorem 5.2.2, one can get a lower
bound where the term ∥det(B)∥L1 is replaced by ∥det(B)− µ∥Mb . The constraint
−2µ = ∂22g seems to suggest that also the term ∥g∥2

L2 should be kept at the limit.
We believe, however, that this lower bound is too loose.

Constructions of deformations at the optimal scaling show that at least two
different oscillatory behaviours can take place, competing with each other. The
first is an oscillation of the Frenet–Serrin frame at a rate that is slower than h. The
second is an oscillation at scale h that seems to preserve some structure of the
Hessian at the limit. The main difficulty is how to detect these oscillations for an
arbitrary sequence in the lower bound.

5.3 The Von Kármán’s regime

We start the section by proving a compactness results that holds for every α > 2,
then we move to the proofs of Γ-convergence, dividing our results between the
three regimes: α ∈ (2, 4), α = 4, and α ∈ (4, ∞).

5.3.1 Compactness

Proposition 5.3.1. Let α > 2 and let (yh) ⊂ W2,2(Ω; R3) be a sequence of deformations
such that Eα

h(yh) ≤ C. Then, there is a sequence of rotations (R̄h) ⊂ SO(3) and a
sequence of constants vectors (ch) ⊂ R3 such that, setting ỹh := R̄T

h yh + ch, we have the
following convergences (up to a subsequence):

(i) uh,1 := min
{

δ
−γ
h , δ

2−2γ
h

}
(ỹh,1 − x1) ⇀ u1 in W1,2(Ω),

(ii) uh,2 := h min
{

δ
−γ
h , δ

2−2γ
h

}
(ỹh,2 − hx2) ⇀ u2 in W1,2(Ω), for some u2 ∈

W2,2(0, L),

(iii) uh,3 := δ
1−γ
h ỹh,3 ⇀ u3 in W2,2(Ω), with u3 ∈ W2,2(0, L),

(iv) Ah := δ
1−γ
h (∇hỹh − Id3×2) ⇀ A in W1,2(Ω; R3×2), with A ∈ W1,2(0, L; R3×2).
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Moreover, A has the form

A =

 0 0
0 0

∂1u3 θ

 ,

with θ ∈ W1,2(0, L). Lastly,

(a) if α ≥ 4 we have u1 = ξ − x2∂1u2 for some ξ ∈ W1,2(0, L),

(b) if 2 < α < 4 we have u2 = 0 and u1, u3 satisfy (5.3).

Proof. Define

Mh :=
1
|Ω|

∫
Ω
∇hyh dx ∈ R3×2.

By the Poincaré–Wirtinger inequality, we have that

∥∇hyh − Mh∥L2 ≤ C∥∇(∇hyh)∥L2 ≤ C∥∇2
hyh∥L2 ≤ Cδ

γ−1
h . (5.18)

By the uniform bound on the energy, ∇hyh is uniformly bounded in W1,2(Ω; R3×2).
In particular, Mh is uniformly bounded. Since

MT
h Mh − Id = (Mh −∇hyh)

T Mh +∇hyT
h (Mh −∇hyh) +∇hyT

h ∇hyh − Id,

it follows that

|MT
h Mh − Id | = C∥MT

h Mh − Id ∥L1

≤ C
(
∥∇hyh − Mh∥L2∥Mh∥L2

+ ∥∇hyh∥L2∥∇hyh − Mh∥L2 + ∥∇hyT
h ∇hyh − Id ∥L2

)
≤ Cδ

γ−1
h .

(5.19)

In particular, for h ≪ 1 we have that MT
h Mh is positive definite, thus by polar

decomposition there is a matrix Rh ∈ O(3, 2) such that Mh = Rh

√
MT

h Mh. Define

R̄h :=
(

Rhe1 Rhe2 Rhe1 ∧ Rhe2
)

Let
ch := − 1

|Ω|

∫
Ω
(R̄T

h yh − x1e1 − hx2e2) dx,

and set ỹh := R̄T
h yh + ch. Observe that Eα

h(ỹh) = Eα
h(yh). We start by showing

convergence (iv). Note that
√

MT
h Mh + Id is invertible and thus, by (5.19),∣∣∣∣√MT

h Mh − Id
∣∣∣∣ ≤

∣∣∣∣∣
(√

MT
h Mh + Id

)−1
∣∣∣∣∣ |MT

h Mh − Id | ≤ Cδ
γ−1
h . (5.20)

Then, by definition of R̄h, we have

R̄T
h Mh =

(√
MT

h Mh

0

)
, (5.21)
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so that, by (5.18) and (5.20)

∥Ah∥L2 ≤ δ
1−γ
h ∥∇hỹh − Id3×2 ∥L2

≤ δ
1−γ
h

(
∥R̃T

h ∇hyh − R̃T
h Mh∥L2 + ∥R̃T

h Mh − Id3×2 ∥L2

)
≤ C.

Moreover,

∥∇Ah∥L2 = δ
1−γ
h ∥∇(∇hỹh)∥L2 ≤ δ

1−γ
h ∥∇2

hỹh∥L2 ≤ C,

and this concludes the proof of convergence (iv). Since

∥∂2 Ah∥L2 = δ
1−γ
h ∥∂2(∇hỹh)∥L2 = hδ

1−γ
h ∥h−1∂2(∇hỹh)∥L2 ≤ Ch → 0,

we have that A is independent of x2.
For convergence (iii), it is sufficient to note that uh,3 has zero mean and that

∥∇uh,3∥L2 = δ1−γ∥∇ỹh,3∥L2 ≤ δ1−γ∥∇hỹh,3∥L2 ≤ δ1−γ∥∇ỹh − Id3×2 ∥L2 ≤ C,

∥∇2uh,3∥L2 = δ
1−γ
h ∥∇∇hỹh,3∥L2 ≤ δ

1−γ
h ∥∇2

hỹh∥L2 ≤ C.

As before, to prove that u3 is independent of x2 note that

∥∂2uh,3∥L2 = hδ
1−γ
h ∥h−1∂2ỹh∥L2 ≤ hδ

1−γ
h ∥∇hỹh − Id3×2 ∥L2 → 0.

Moreover, since
∂1uh,3 = δ

1−γ
h ∂1ỹh,3 = (Ah)31,

we have A31 = ∂1u3.
We move now to the proof of (i)–(ii). Observe that

(∇hỹh − Id3×2)
T(∇hỹh − Id3×2) = ∇hỹT

h ∇hỹh − Id

− 2 sym((∇hỹh)
′ − Id).

(5.22)

By (iv) and a standard Sobolev’s Embedding argument, we have

∥∇hỹh − Id3×2 ∥Lp ≤ Cδ
γ−1
h ∀ p < ∞. (5.23)

Thus, by (5.22) and Hölder’s inequality we have that

∥ sym((∇hỹh)
′ − Id)∥L2 ≤ C max{δ

2γ−2
h , δ

γ
h }. (5.24)

By some simple computations, we have(
∂1uh,1 h−1∂2uh,1

h−1∂1uh,2 h−2∂2uh,2

)
= min{δ

2−2γ
h , δ

−γ
h }((∇hỹh)

′ − Id). (5.25)

Taking the symmetric part on both sides of (5.25), by (5.24) we deduce that, for
h ≪ 1∥∥∥∥sym

(
∂1uh,1 ∂2uh,1
∂1uh,2 ∂2uh,2

)∥∥∥∥
L2

≤
∥∥∥∥sym

(
∂1uh,1 h−1∂2uh,1

h−1∂1uh,2 h−2∂2uh,2

)∥∥∥∥
L2

≤ C (5.26)
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By (5.25) we also deduce

A′
h = max{δ

γ−1
h , δh}

(
∂1uh,1 h−1∂2uh,1

h−1∂1uh,2 h−2∂2uh,2

)
. (5.27)

Note that, by (5.21), we have that∫
Ω
(∇hỹh)

′ dx =
∫

Ω
(R̄T

h ∇hyh)
′ dx = (R̄T

h Mh)
′ ∈ R2×2

sym.

In particular, skew(A′
h) has zero mean, and, by (5.27), so has

skew
(

∂1uh,1 ∂2uh,1
∂1uh,2 ∂2uh,2

)
.

Then, since both uh,1 and uh,2 have zero mean, convergences (i)–(ii) follow from
(5.26) and an application of Korn’s inequality. By (5.26), we also deduce that

∂2u2 = ∂1u2 + ∂2u1 = 0.

This implies that u2 does not depend on x2 and that there exists ξ ∈ W1,2(0, L)
such that u1 = ξ − x2∂1u2. In particular, x2∂1u2 ∈ W1,2(Ω), thus u2 ∈ W2,2(0, L).
Taking the symmetric part on both sides of (5.27) and passing to the limit, we
deduce from (5.26) that sym(A′) = 0. We show now that A21 = −A12 = 0. We
have

∂1(Ah)12 = ∂1(δ
1−γ
h h−1∂2ỹh,1) = h−1δ

1−γ
h ∂12ỹh,1 = h−1δ

1−γ
h ∂12ỹh · e1

= h−1δ
1−γ
h ∂12ỹh · ∂1ỹh + h−1δ

1−γ
h ∂12ỹh · (e1 − ∂1ỹh)

=
1
2

h−1δ
1−γ
h ∂2(∂1ỹh · ∂1ỹh − 1) + h−1δ

1−γ
h ∂12ỹh(e1 − ∂1ỹh).

(5.28)

Note that, since h−1δh → 0,

h−1δ
1−γ
h ∂2(∂1ỹh · ∂1ỹh − 1) = h−1δh∂2[δ

−γ
h (∂1ỹh · ∂1ỹh − 1)] → 0

in (W1,2(Ω))∗. Moreover, since δ
1−γ
h h−1∂12ỹh is uniformly bounded in L2, we have

by (5.23)
h−1δ

1−γ
h ∂12ỹh(e1 − ∂1ỹh) → 0 in Lq(Ω),

for every q ∈ [1, 2). Passing to the limit in (5.28), we deduce that ∂1 A12 = 0, that
is A12 = c for some c ∈ R. Thus, since we already observed that skew(A′

h) has
zero mean, so has A, from which it follows that A12 = 0. We are left to prove (5.3).
Thus, suppose that 2 < α < 4. Then, dividing (5.22) by δ

2γ−2
h and passing to the

limit, we deduce

δ
2−2γ
h sym((∇hyh)

′ − Id) ⇀ −1
2

AT A.

Looking at the top-left component, we get

∂1u1 = −1
2
(AT A)11 = −1

2
A2

31 = −1
2
(∂1u3)

2,

proving (5.3). Recalling that u1 = ξ − x2∂1u2, and that u3 is independent of x2, we
immediately deduce that ∂1u2 = 0. Since u2 has zero mean, it follows that u2 = 0.
Then, by (5.3), u1 ∈ W2,2(Ω).
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5.3.2 Γ-convergence for α > 4

In order to make the exposition more clear, we split the Γ-convergence result in
two parts. Firstly, we prove the Γ-liminf inequality, then we move to the recovery
sequence construction.

Theorem 5.3.2 (lim inf inequality). Let α > 4. For any sequence of deformations
(yh) ⊂ W2,2(Ω; R3) such that Eα

h(yh) ≤ C we have that

lim inf
h→0+

Eα
h(yh) ≥ ILVK(u1, u3, θ),

where u1, u3 and θ are the ones given by Proposition 5.3.1.

Proof. We borrow the notation from Proposition 5.3.1. Firstly, note that Eα
h(yh) =

Eα
h(ỹh). Moreover, by the convergence of Ah, we deduce

∥∇hỹh − Id3×2 ∥L2 ≤ Cδ
γ−1
h .

Thus, since γ > 2, we have

1
δ

γ
h
(∇hỹh − Id3×2)

T(∇hỹh − Id3×2) → 0

strongly in L2(S; R2×2). Hence, by (5.22) it follows that

1
δ

γ
h
(∇hỹT

h ∇hỹh − Id)11 ⇀ 2∂1u1 in L2(Ω).

Then, by lower semicontinuity

lim inf
h→0+

Eα
h(yh) = lim inf

h→0+
Eα

h(ỹh)

≥ lim inf
h→0+

[
1
δα

h

∫
Ω
|(∇hỹT

h ∇hỹh − Id)11|2 dx

+
1

δα−2
h

∫
Ω
|∂11ỹh,3|2 dx +

2
δα−2

h

∫
Ω
|h−1∂12ỹh,3|2 dx

]

≥ 4
∫

Ω
|∂1u1|2 dx +

∫ L

0

(
|∂11u3|2 + 2|∂1θ|2

)
dx = ILVK(u1, u3, θ).

This concludes the proof.

Theorem 5.3.3 (Recovery sequence). Let α > 4. Let θ ∈ W1,2(0, L), u2, u3 ∈
W2,2(0, L) and u1 ∈ W1,2(Ω) such that u1 = ξ − x2∂1u2 for some ξ ∈ W1,2(0, L).
Then, there exists a sequence of deformations (yh) ⊂ W2,2(Ω; R3) such that

(i) uh,1 := δ
−γ
h (yh,1 − x1) → u1 = ξ − x2∂1u2 in W1,2(Ω),

(ii) uh,2 := hδ
−γ
h (yh,2 − hx2) → u2 in W2,2(Ω), with u2 ∈ W2,2(0, L),

(iii) uh,3 := δ
1−γ
h yh,3 → u3 in W2,2(Ω) with u3 ∈ W2,2(0, L),
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(iv) Ah := δ
1−γ
h (∇hyh − Id3×2) → A in W1,2(Ω; R3×2) with

A =

 0 0
0 0

∂1u3 θ

 ,

(v) Eα
h(yh) → ILVK(u1, u3, θ).

Proof. Suppose that ξ, u2, u3 and θ are in C∞([0, L]). Define

yh :=

 x1
hx2
0

+ δ
γ−1
h

 0
0
u3

+
δ

γ
h
h

 0
u2
0

+ hx2δ
γ−1
h

0
0
θ

+ δ
γ
h

ξ − x2∂1u2
0
0

 .

Clearly yh ∈ W2,2(S). The convergences of uh,1, uh,2 and uh,3 follow trivially since
h−1δh → 0. We have

∇hyh = Id3×2 +δ
γ−1
h

 0 0
0 0

∂1u3 θ

+
δ

γ
h
h

 0 −∂1u2
∂1u2 0

0 0

+ hx2δ
γ−1
h

 0 0
0 0

∂1θ 0


+ δ

γ
h

∂1ξ − x2∂11u2 0
0 0
0 0

 .

Since h−1δh → 0, the convergence of Ah follows. Moreover, we have

∇hyT
h ∇hyh − Id = δ

γ
h

(
2(∂1ξ − x2∂11u2) 0

0 0

)
+ o(δγ

h ).

Differentiating the rescaled gradient, we have that

∂1∇hyh = δ
γ−1
h

 0 0
0 0

∂11u3 ∂1θ

+ o(δγ−1
h ),

1
h

∂2∇hyh = δ
γ−1
h

 0 0
0 0

∂1θ 0

+ o(δγ−1
h ).

This easily implies that

Eα
h(yh) → 4

∫
Ω
|∂1u1|2 dx +

∫ L

0
|∂11u3|2 dx + 2

∫ L

0
|∂1θ|2 dx = ILVK(u1, u3, θ).

By a standard density argument the proof is concluded.

5.3.3 Γ-convergence for α = 4

Theorem 5.3.4 (lim inf inequality). Let (yh) ⊂ W2,2(Ω; R3) be such that E4
h(yh) ≤ C.

Then
lim inf
h→0+

E4
h(yh) ≥ IVK(u1, u3, θ).

where u1, u3, and θ are the one given by Proposition 5.3.1.
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Proof. Let ỹh be the deformation given by Proposition 5.3.1. Firstly, note that
E4

h(yh) = E4
h(ỹh). Moreover, by the weak convergence of Ah in W1,2(Ω; R3×2) we

have
δ−1

h (∇hỹh − Id3×2) → A in Lp(Ω; R3×2)

for every p < ∞. Then

1
δ2

h
(∇hỹh − Id3×2)

T(∇hỹh − Id3×2) → AT A

strongly in L2(Ω; R2×2). Thus, by (5.22) it follows that

1
δ2

h
(∇hỹT

h ∇hỹh − Id)11 ⇀ (AT A)11 + 2∂1u1 = (∂1u3)
2 + 2∂1u1 in L2(Ω).

Then,

lim inf
h→0+

E4
h(yh) = lim inf

h→0+
E4

h(ỹh)

≥ lim inf
h→0+

[
1
δ4

h

∫
Ω
|(∇hỹT

h ∇hỹh − Id)11|2 dx

+
1
δ2

h

∫
Ω
|∂11ỹh,3|2 dx +

2
δ2

h

∫
Ω
|h−1∂12ỹh,3|2 dx

]

≥
∫

Ω
|(∂1u3)

2 + 2∂1u1|2 dx +
∫ L

0

(
|∂11u3|2 + 2|∂1θ|2

)
dx

= IVK(u1, u3, θ).

Theorem 5.3.5 (Recovery sequence). Let θ ∈ W1,2(0, L), u2, u3 ∈ W2,2(0, L) and
u1 ∈ W1,2(Ω) such that u1 = ξ − x2∂1u2 for some ξ ∈ W1,2(0, L). Then, there exists a
sequence of deformations (yh)h ⊂ W2,2(Ω; R3) such that

(i) uh,1 := δ−2
h (yh,1 − x1) → u1 = ξ − x2∂1u2 in W1,2(Ω),

(ii) uh,2 := hδ−2
h (yh,2 − hx2) → u2 in W2,2(Ω), with u2 ∈ W2,2(0, L),

(iii) uh,3 := δ−1
h yh,3 → u3 in W2,2(Ω) with u3 ∈ W2,2(0, L),

(iv) Ah := δ−1
h (∇hyh − Id3×2) → A in W1,2(Ω; R3×2) with

A =

 0 0
0 0

∂1u3 θ

 ,

(v) E4
h(yh) → IVK(u1, u3, θ).
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Proof. Suppose that ξ, u2, u3 and θ are in C∞([0, L]). Define

yh :=

 x1
hx2
0

+ δh

 0
0
u3

+
δ2

h
h

 0
u2
0

+ hx2δh

0
0
θ

+ δ2
h

ξ − x2∂1u2
0
0


− hδ2

hx2

∂1u3θ
θ2/2

0

 .

The convergences of uh,1, uh,2 and uh,3 follow trivially since h−1δh → 0. We have

∇hyh = Id3×2 +δh

 0 0
0 0
u′

3 θ

+
δ2

h
h

 0 −∂1u2
∂1u2 0

0 0

+ hx2δh

 0 0
0 0

∂1θ 0


+ δ2

h

∂1ξ − x2∂11u2 −∂1u3θ
0 −θ2/2
0 0

+ O(hδ2
h),

and

∂1∇hyh = δh

 0 0
0 0

∂11u3 ∂1θ

+ o(δh, L2),

1
h

∂2∇hyh = δh

 0 0
0 0

∂1θ 0

+ o(δh, L2).

In particular, we have the desired convergence of Ah. By some simple computation,
we have

∇hyT
h ∇hyh − Id = δ2

h

(
2(∂1ξ − x2∂11u2) + (∂1u3)

2 ∂1u3θ − ∂1u3θ
∂1u3θ − ∂1u3θ θ2 − θ2

)
+ o(δ2

h)

= δ2
h

(
2(∂1ξ − x2∂11u2) + (∂1u3)

2 0
0 0

)
+ o(δ2

h).

Putting all the calculations together we conclude that E4
h(yh) → IVK(u1, u3, θ). For

an arbitrary quadruplet (ξ, u2, u3, θ) we conclude by density.

5.3.4 Γ-convergence for 2 < α < 4

This section is further divided between the two cases h−2δ
2−γ
h → 0, +∞. We start

with the simpler one, in which no constraint on the Gauss’ curvature is present.

Γ-convergence for h−2δ
2−γ
h → +∞

Theorem 5.3.6 (lim inf inequality). Let 2 < α < 4. For every sequence of deformations
(yh) ⊂ W2,2(Ω; R3) such that Eα

h(yh) ≤ C it holds

lim inf
h→0+

Eα
h(yh) ≥ ICVK(u3, θ),

where u3, and θ are the ones given by Proposition 5.3.1.
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Proof. Let ỹh be the deformation given by Proposition 5.3.1. We have

lim inf
h→0+

Eα
h(yh) = lim inf

h→0+
Eα

h(ỹh)

≥ lim inf
h→0

[
1

δα−2
h

∫
Ω
|∂11ỹh,3|2 dx +

2
δα−2

h

∫
Ω
|h−1∂12ỹh,3|2 dx

]

≥
∫ L

0
|∂11u3|2 dx + 2

∫ L

0
|∂1θ|2 dx = ICVK(u3, θ),

that concludes the proof.

Theorem 5.3.7 (Recovery sequence). Let 2 < α < 4 and suppose that h−2δ
2−γ
h →

+∞. Let θ ∈ W1,2(0, L) and u3 ∈ W2,2(0, L; R3). Let u1 ∈ W2,2(0, L) such that
2∂1u1 + (∂1u3)

2 = 0. Then, there exists a sequence of deformations (yh) ⊂ W2,2(Ω; R3)
such that

(i) uh,1 := δ
2−2γ
h (yh,1 − x1) → u1 in W1,2(Ω) with u1 ∈ W2,2(0, L),

(ii) uh,2 := hδ
2−2γ
h (yh,2 − hx2) → 0 in W2,2(Ω),

(iii) uh,3 := δ
1−γ
h yh,3 → u3 in W2,2(Ω) with u3 ∈ W2,2(0, L),

(iv) Ah := δ
1−γ
h (∇hyh − Id3×2) → A in W1,2(Ω; R3×2) with

A =

 0 0
0 0

∂1u3 θ

 ,

(v) Eα
h(yh) → ICVK(u3, θ).

Proof. Suppose that u3, θ ∈ C∞([0, L]), so that u1 ∈ C∞([0, L]). Let

Ã :=

 0 0 −∂1u3
0 0 −θ

∂1u3 θ 0

 .

We denote by Rh ∈ C∞([0, L]) the unique global solution of the Cauchy’s problem{
∂1X = δ

γ−1
h X∂1 Ã in [0, L],

X(0) = exp(δγ−1
h Ã(0)).

Note that Rh(0) ∈ SO(3) and that

∂1(RhRT
h ) = ∂1RhRT

h + Rh(∂1Rh)
T = δ

γ−1
h (Rh∂1 ÃRT

h + Rh(∂1 Ã)
T RT

h ) = 0,

that is Rh ∈ SO(3) everywhere in [0, L]. We define

yh :=
∫ x1

0
Rh(t)e1 dt + hx2Rhe2 + δ

γ−1
h

δ
γ−1
h u1(0)

0
u3(0)

 .



5.3 THE VON KÁRMÁN’S REGIME 125

We have

∇hyh =
(

Rhe1 Rhe2
)
+ hx2∂1Rh

0 0
1 0
0 0


=
(

Rhe1 Rhe2
)
+ hδ

γ−1
h x2Rh∂1 Ã

0 0
1 0
0 0


=
(

Rhe1 Rhe2
)
+ hδ

γ−1
h x2Rh

 0 0
0 0

∂1θ 0

 .

In particular, we deduce that

RT
h ∇hyh = Id3×2 +hx2δ

γ−1
h

 0 0
0 0
θ′ 0

 .

Then

∇hyT
h ∇hyh − Id = (RT

h ∇hyh)
T(RT

h ∇hyh)− Id

= h2δ
2γ−2
h x2

2

(
(∂1θ)2 0

0 0

)
+ O(h2δ

2γ−2
h ).

By the assumption h−2δ
2−γ
h → +∞ we get that

1
δα

h

∫
Ω
|∇T

h yh∇hyh − Id |2 dx → 0.

We move now to the computation of the rescaled Hessian. We have

∂1(∇hyh) =
(
∂1Rhe1 ∂1Rhe2

)
+ δ

γ−1
h Rh

 0 0
0 0

∂11u3 ∂1θ

+ o(δγ−1
h ),

1
h

∂2(∇hyh) = δ
γ−1
h Rh

 0 0
0 0

∂1θ 0

+ o(δγ−1
h ).

Since rotations do not change the Frobenius’ norm, this proves that Eα
h(yh) →

ICVK(u3, θ). We are left to prove the convergences of uh,1, uh,2, uh,3 and Ah. Follow-
ing [FMP13, Theorem 3.12] we show that Rh has the following structure:

Rh = Id+δ
γ−1
h Ã + δ

2γ−2
h

∫ x1

0
Ã(s)∂1 Ã(s) ds +

1
2

δ
2γ−2
h Ã2(0) + O(δ3γ−3). (5.29)

Indeed, define

Qh(x1) := Id+δ
γ−1
h Ã(x1) + δ

2γ−2
h

∫ x1

0
Ã(s)∂1 Ã(s) ds +

1
2

δ
2γ−2
h Ã2(0).
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Observe that Qh solves the following ODE

∂1Qh = δ
γ−1
h Qh∂1 Ã − δ

3γ−3
h

( ∫ x1

0
Ã(s)∂1 Ã(s) ds +

1
2

Ã2(0)

)
∂1 Ã

with initial datum

Qh(0) = exp(δγ−1
h Ã(0)) + O(δ3γ−3

h ).

Then, by Gronwall’s Lemma 2.2.3

|Qh − Rh| = O(δ3γ−3
h ).

Recalling that 2∂1u1 = −(∂1u3)
2, by (5.29) we have

(Rh)11 = 1 − δ
2γ−2
h

∫ x1

0
∂1u3∂11u3 ds − 1

2
δ

2γ−2
h (∂1u3)

2(0) + O(δ3γ−3
h )

= 1 + δ
2γ−2
h u′

1(x1) + O(δ3γ−3
h ),

(5.30)

(Rh)12 = O(δ2γ−2
h ). (5.31)

Then, by (5.30)–(5.31) we have

uh,1 =
1

δ
2γ−2
h

(yh,1 − x1) =
1

δ
2γ−2
h

[∫ x1

0
(Rh)11 ds + hx2(Rh)12 − x1

]
+ u1(0)

= u1 − u1(0) + u1(0) + O(h, δ
γ−1
h ) → u1

in W1,2(S). To deduce the rest of the convergences we argue similarly. We have

(Rh)21 = O(δ2γ−2
h ),

(Rh)22 = 1 + O(δ2γ−2
h ).

Thus,

uh,2 =
h

δ
2γ−2
h

(yh,2 − hx2) =
h

δ
2γ−2
h

[∫ x1

0
(Rh)21(s) ds + hx2(Rh)22 − hx2

]
= O(h) → 0

in W2,2(S). Lastly,

(Rh)31 = δ
γ−1
h ∂1u3 + O(δ2γ−2

h ),

(Rh)32 = O(δγ−1
h ),

from which we deduce

uh,3 =
1

δ
γ−1
h

yh,3 =
1

δ
γ−1
h

[∫ x1

0
(Rh)31(s) ds + hx2(Rh)32

]
+ u3(0)

= u3 − u3(0) + u3(0) + O(h) → u3
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in W2,2(S). To conclude observe that

∇hyh − Id3×2 = δ
γ−1
h A + o(δγ−1

h ),

so that the convergence of Ah follows. To extend these results to non-smooth u3
and θ we just exploit the density of smooth functions in W2,2(0, L) and W1,2(0, L)
paired with the continuity of ICVK with respect to the strong topology of those
spaces.

Γ-convergence for h−2δ
2−γ
h → 0

We start by proving a Lemma similar in spirit to Lemma 5.2.3, concerned with the
convergence of a suitable rescaling of the Gauss’ curvature.

Lemma 5.3.8. Let 2 < α < 4 and suppose that h−2δ
2−γ
h → 0. Let (yh) ⊂ W2,2(S; R3)

be a sequence of deformations such that Eα
h(yh) ≤ C. Then

δ
2−2γ
h det(∇2

hyh)
∗
⇀ 0 in Mb(S).

Proof. Recall that, defining Gh := ∇hyT
h ∇hyh − Id, equality (5.9) holds in the sense

of distributions. In particular, since ∥Gh∥L2 ≤ Cδ
γ
h , we have that

δ
2−2γ
h ∥det(∇2

hyh)∥(W2,2)∗ ≤ C
1
h2 δ

2−2γ
h ∥∇2Gh∥(W2,2)∗ ≤ Ch−2δ

2−γ
h → 0.

By the boundedness of the energy, we have that δ
2−2γ
h ∥det(∇2

hyh)∥L1 ≤ C, that
gives, up to a subsequence, δ

2−2γ
h det(∇2

hyh)
∗
⇀ µ = 0 in Mb(S).

Theorem 5.3.9 (lim inf inequality). Let 2 < α < 4 and suppose that h−2δ
2−γ
h → 0.

lim inf
h→0+

Eα
h(yh) ≥ IVKS(u3, θ),

where u3 and θ are the one given by Proposition 5.3.1.

Proof. Let ỹh be the deformation given by Proposition 5.3.1. For every φ ∈
C1

0(Ω; [0, 1]) we get

Eα
h(ỹh) ≥

1
δα−2

h

∫
Ω
|∇2

hỹh|2 dx

=
1

δα−2
h

∫
Ω

φ(|∂11ỹh,3|2 + 2|h−1∂12ỹh,3|2 + |h−2∂22ỹh,3|2) dx

+
1

δα−2
h

∫
Ω
(1 − φ)(|∂11ỹh,3|2 + 2|h−1∂12ỹh,3|2 + |h−2∂22ỹh,3|2) dx

=
1

δα−2
h

∫
Ω

φ|∂11ỹh + h−2∂22ỹh|2 dx − 2δ
2−2γ
h

∫
Ω

φ det(∇2
hỹh) dx

+
1

δα−2
h

∫
Ω
(1 − φ)(|∂11ỹh − h−2∂22ỹh|2 + 4|h−1∂12ỹh|2) dx

+ 2δ
2−2γ
h

∫
Ω
(1 − φ)det(∇2

hỹh) dx.

(5.32)
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Since φ takes values in [0, 1] all the quadratic terms are lower semicontinuous with
respect to the weak convergences in L2. Let η be the weak limit of δ

1−γ
h ∂22ỹh,3 in

L2(Ω). Note that η exists, up to extracting a subsequence, by the boundedness of
the energy. Thus, passing to the limit in (5.32), we get by Lemma 5.3.8

lim inf
h→0

Eα
h(yh) = lim inf

h→0
Eα

h(ỹh)

≥
∫

Ω
φ|∂11u3 + η|2 dx

+
∫

Ω
(1 − φ)

(
|∂11u3 − η|2 + 4|∂11θ|2

)
dx

=
∫ L

0
|∂11u3|2 dx + 2

∫
Ω

φ∂11u3η dx +
∫

Ω
|η|2 dx

+ 4
∫ L

0
(1 − φ)|∂11θ|2 dx − 2

∫
Ω
(1 − φ)∂11u3η dx

=
∫ L

0
|∂11u3|2 dx + 2

∫ L

0
|∂1θ|2 dx +

∫
Ω
|η|2 dx

+ 2
∫

Ω
φ(∂11u3η − (∂1θ)2) dx

− 2
∫

Ω
(1 − φ)(∂11u3η − (∂1θ)2).

(5.33)

Let
Ω+ := {x ∈ Ω : ∂11u3η − (∂1θ)2 ≥ 0}

and Ω− := Ω\Ω+. Picking a sequence (φn) ⊂ C1
0(Ω; [0, 1]) such that φn → χΩ+

almost everywhere, from (5.33) we deduce by Dominated Convergence Therorem

lim inf
h→0

Eα
h(yh) ≥

∫ L

0
|∂11u3|2 dx + 2

∫ L

0
|∂1θ|2 dx +

∫
Ω
|η|2 dx

+ 2
∫

Ω
|∂11u3η − (∂1θ)2| dx ≥ IVKS(u3, θ).

This concludes the proof.

As for the analogous Kirchhoff’s regime, in order to prove the Γ-convergence,
we need to construct isometries of thin strips. The arguments are similar to the
one of Theorem 5.2.2: we use a diagonal argument to relax the constraint on the
rescaled Gauss’ curvature. However, in this setting, the isometries we construct
depend on both indices: the one linked to the relaxation and the width of the thin
strip. Thus, we need a careful analysis to show that we can extract a converging
diagonal subsequence.

Theorem 5.3.10 (Recovery sequence). Let 2 < α < 4 and suppose that h−2δ
2−γ
h → 0.

Let θ ∈ W1,2(0, L) and u3 ∈ W2,2(0, L; R3). Let u1 ∈ W2,2(0, L) such that

2∂1u1 + (∂1u3)
2 = 0.

Then, there exists a sequence of deformations (yh) ⊂ W2,2(Ω; R3) such that

(i) uh,1 := δ
2−2γ
h (yh,1 − x1) ⇀ u1 in W1,2(Ω) with u1 ∈ W2,2(0, L),
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(ii) uh,2 := hδ
2−2γ
h (yh,2 − hx2) ⇀ 0 in W2,2(Ω),

(iii) uh,3 := δ
1−γ
h yh,3 ⇀ u3 in W2,2(Ω) with u3 ∈ W2,2(0, L),

(iv) Ah := δ
1−γ
h (∇hyh − Id3×2) ⇀ A in W1,2(Ω; R3×2) with

A =

 0 0
0 0

∂1u3 θ

 ,

(v) Eα
h(yh) → IVKS(u3, θ).

Proof. For almost every x1 ∈ (0, L), let c(x1) be such that

|c(x1)|2 + 2|∂11u3(x1)c(x1)− (∂1θ)2| = Qs(∂11u3(x1), ∂1θ(x1)).

It is immediate to see that

c(x1) =

{
(∂1θ(x1))

2/∂11u3(x1) if |∂11u3(x1)| > |∂1θ(x1)|,
∂11u3(x1) if |∂11u3(x1)| ≤ |∂1θ(x1)|.

Thus, c ∈ L2(0, L). Define

M :=
(

∂11u3 ∂1θ
∂1θ c

)
,

and let (λn) ⊂ C∞([0, L]), (pn) ⊂ C∞([0, L]; R2) be the sequences provided by
Lemma 5.2.6. Precisely, we have |pn| ≡ 1, pn ̸= e2 in [0, L] for every n ∈ N, and
defining Mn := λn pn ⊗ pn, we have Mn ⇀ M in L2 and∫ L

0
|Mn|2 dx →

∫ L

0
|M|2 dx + 2

∫ L

0
|det(M)| dx = IVKS(u3, θ).

Let Rn
h be the unique global solution of the Cauchy’s problem{

∂1X = δ
γ−1
h X∂1 Ãn in [0, L],

X(0) = exp(δγ−1
h Ãn(0)),

where

Ãn :=

 0 0 −M̄n
11

0 0 −M̄n
12

M̄n
11 M̄n

12 0

 ,

and

M̄n(x1) :=
(

∂1u3(0) θ(0)
θ(0) 0

)
+
∫ x1

0
Mn(s) ds.

We set dh,n
1 := Rn

h e1 and dh,n
2 := Rn

h e2, and we define

ỹn
h :=

δ
2γ−2
h u1(0)

0
δ

γ−1
h u3(0)

+
∫ x1

0
dh,n

1 (s) ds.
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Let Mn
h := δ

γ−1
h Mn and λn

h := δ
γ−1
h λn. We are in a position to apply Theorem 2.2.15,

with the choices y := ỹn
h , d2 := dh,n

2 , λ := λn
h , and p := pn, up to a continuous

extension in a common neighbourhood of [0, L]. For some εn > 0, depending
solely on n, there are isometric immersions

wn
h ∈ W1,∞(Ωεn , R3) ∩ W2,2

iso (Ωεn ; R3),

defined by the relation

wn
h(Φ

n(x1, x2)) = ỹn
h(x1) + x2

(
dh,n

1 (x1) dh,n
2 (x1)

)
(pn)⊥(x1)

for (x1, x2) ∈ (Φn)−1(Ωεn) ⊂ Ωηn , where ηn > 0. Moreover, wn
h satisfies properties

(a)–(c) of Theorem 2.2.15. Here

Φn(x1, x2) := x1e1 + x2(pn)⊥(x1),

is an invertible bi-Lipschitz homeomorphism onto Ωεn . For h ≤ εn, we define
Th(x1, x2) := (x1, hx2) and

yn
h := wn

h ◦ Th ∈ W2,2(Ω; R3).

We start by showing that

Eα
h(y

n
h)

h→0−−→
∫ L

0
|Mn|2 dx. (5.34)

Since wn
h is an isometric immersion, the elastic energy term vanishes. Indeed,

(∇hyn
h)

T∇hyn
h − Id = (∇wn

h ◦ Th)
T(∇wn

h ◦ Th)− Id = 0. (5.35)

By Theorem 2.2.15–(b), we have

∇wn
h(Φ

n(x1, x2)) =
(

dh,n
1 (x1) dh,n

2 (x1)
)

. (5.36)

In particular, defining νn
h := ∂1wn

h ∧ ∂2wn
h , we get

νn
h (Φ

n(x1, x2)) = dh,n
3 (x1).

Recall that Φn is invertible. To simplify the notation, let us write qn in place of
(Φn)−1. We get

∂1wn
h = dh,n

1 (qn
1 ),

∂2wn
h = dh,n

2 (qn
1 ),

νn
h = dh,n

3 (qn
1 ).

Differentiating, we obtain

∂11wn
h = ∂1dh,n

1 (qn
1 )∂1qn

1 ,

∂12wn
h = ∂1dh,n

2 (qn
1 )∂1qn

1 ,

∂22wn
h = ∂1dh,n

2 (qn
1 )∂2qn

1 .
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Thus, by Theorem 2.2.15–(c),

∂ijwn
h · νn

h = δ
γ−1
h Mn

1j(q
n
1 )∂iqn

1 , i, j = 1, 2.

Note that
∇Φn(x1, x2) =

(
e1 + x2∂1(pn)⊥(x1) (pn)⊥(x1)

)
,

and so
∇Φn(Th) →

(
e1 (pn)⊥(x1)

)
pointwise as h → 0. Note also that by continuity of qn, we have

qn(Th) → qn(x1, 0) = x1e1 (5.37)

pointwise. Since
∇qn = (∇Φn)−1(qn)

and

(∇Φn)−1 =
1

(pn)⊥2

(
(pn)⊥2 −(pn)⊥1

0 1

)
,

by (5.37) we get that

∇qn
1 (Th) → eT

1 (∇Φn)−1(x1, 0) =
1

(pn(x1))
⊥
2

(
(pn(x1))

⊥
2 −(pn(x1))

⊥
1
)

=
1

pn
1 (x1)

(pn(x1))
T

pointwise as h → 0, where we have used the fact that

(pn)⊥ =

(
pn

2
−pn

1

)
.

In particular, for i, j = 1, 2,

δ
1−γ
h ∂ijwn

h(Th) · νn
h (Th) = Mn

1j(q
n
1 (Th))(∂iqn

1 )(Th)

→ 1
pn

1 (x1)
Mn

1j(x1)pn
i (x1) = Mn

ij(x1)
(5.38)

pointwise as h → 0, where in the last equality we have used the fact that Mn =
λn pn ⊗ pn. Recall that, by Proposition 5.2.4, we have

2

∑
i,j=1

|∂ijwn
h |

2 =
2

∑
i,j=1

|∂ijwn
h · νn

h |
2.

Thus, since ∇2
hyh = ∇2wn

h ◦ Th, by (5.38) and Dominated Convergence Theorem,
we deduce

δ2−α
h

∫
Ω
|∇2

hyn
h |

2 dx = δ2−α
h

2

∑
i,j=1

∫
Ω
|∂ijwn

h(Th) · νn
h (Th)|2 dx →

∫ L

0
|Mn|2 dx.
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Recalling (5.35), we conclude the proof of (5.34).
We move now to the proof of the convergence of the rescaled displacements.

Define

un
h,1 := δ

2−2γ
h (yn

h,1 − x1),

un
h,2 := hδ

2−2γ
h (yn

h,2 − hx2),

un
h,3 := δ

1−γ
h yn

h,3,

An
h := δ

1−γ
h (∇hyh − Id3×2).

Recall that, by the boundedness of the energy (see Proposition 5.3.1), un
h,1, un

h,2, un
h,3,

and An
h converge, up to subsequences, in their respective spaces, that is

un
h,1 ⇀ un

1 in W1,2(Ω),

un
h,2 ⇀ 0 in W2,2(Ω),

un
h,3 ⇀ un

3 in W2,2(Ω),

An
h ⇀ An in W1,2(Ω; R3×2).

Thus, it is sufficient to identify un
1 , un

3 , and An. Arguing as in proof of Theorem 5.3.7,
we have Rn

h ∈ SO(3) everywhere in [0, L], and

Rn
h = Id+δ

γ−1
h Ãn + δ

2γ−2
h

∫ x1

0
Ãn(s)∂1 Ãn(s) ds

+
1
2

δ
2γ−2
h (Ãn)2(0) + O(δ3γ−3),

(5.39)

where the big-O notation is used with respect to the convergence h → 0. Thus

(Rn
h)11 = 1 − δ

2γ−2
h

∫ x1

0
M̄n

11Mn
11 ds − 1

2
δ

2γ−2
h (∂1u3)

2(0) + O(δ3γ−3
h )

= 1 − 1
2

δ
2γ−2
h (M̄n

11)
2 + O(δ3γ−3

h ),
(5.40)

(Rn
h)12 = O(δ2γ−2

h ), (5.41)

(Rn
h)21 = O(δ2γ−2

h ), (5.42)

(Rn
h)22 = 1 + O(δ2γ−2

h ). (5.43)

By (5.36) and (5.40)–(5.41), we have

∂1(wn
h)1 = (Rn

h(q
n
1 ))11 = 1 − 1

2
δ

2γ−2
h (M̄n

11(q
n
1 ))

2 + O(δ3γ−3
h ),

∂2(wn
h)1 = (Rn

h(q
n
1 ))12 = O(δ2γ−2

h ).

Thus,

∂1un
h,1 = δ

2−2γ
h ((∂1wn

h(Th))1 − 1) = −1
2
(Mn

11(q
n
1 (Th)))

2 + O(δγ−1
h ),

∂2un
h,1 = δ

2−2γ
h (h(∂2wn

h(Th))1) = O(h).
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Since Th → x1e1 pointwise as h → 0, by the continuity of both qn and M̄n, it follows
that

∂1un
h,1 → −1

2
(M̄n

11(x1))
2,

∂2un
h,1 → 0.

In particular,

un
h,1 ⇀ c1 −

1
2

∫ x1

0
(M̄n

11(s))
2 ds = un

1 in W2,2(Ω).

Since by Theorem 2.2.15–(a) we have

un
h,1(0, 0) = δ

2−2γ
h (wn

h)1(0, 0) = δ
2−2γ
h ỹn

h(0) = u1(0)

we have c1 = u1(0). By (5.42)–(5.43) and (5.36), we get

(∂1wn
h)3 = (Rn

h(q
n
1 ))31 = δ

γ−1
h M̄n

11(q
n
1 ) + O(δ2γ−2

h ),

(∂2wn
h)2 = (Rn

h(q
n
1 ))32 = O(δγ−1

h ).

Thus, arguing as before

∂1un
h,2 = δ

1−γ
h ((∂1wn

h(Th))1) = M̄n
11(q

n
1 (Th)) + O(δγ−1

h ) → M̄n
11(x1),

∂2un
h,2 = δ

1−γ
h (h(∂2wn

h(Th))1) = O(h) → 0.

It follows that
un

3 (x1) = c3 +
∫ x1

0
M̄n

11(s) ds,

where, arguing as before, we get c3 = u3(0). Lastly, by (5.39), we get

∇wn
h = Id+δ

γ−1
h

 0 0
0 0

M̄n
11(q

n
1 ) M̄n

12(q
n
1 )

+ O(δ2γ−2
h ).

Thus

An
h = δ

1−γ
h (∇wh(Th)− Id) =

 0 0
0 0

M̄n
11(q

n
1 (Th)) M̄n

12(q
n
1 (Th))

+ O(δγ−1
h )

→

 0 0
0 0

M̄n
11(x1) M̄n

12(x1)

 = An.

Since Mn ⇀ Mn in L2, by definition of M̄n we immediately deduce that

un
1 → u1(0)−

1
2

∫ x1

0

(
∂1u3(0) +

∫ s

0
∂11u3(z) dz

)2
ds

= u1(0)−
1
2

∫ x1

0
(∂1u3(s))2 ds = u1(0) +

∫ x1

0
∂1u1(s) ds = u1.
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where the convergence is in W1,2(Ω). Similarly,

un
3 → u3(0) +

∫ x1

0

(
∂1u3(0) +

∫ s

0
∂11u3(z) dz

)
ds = u3(0) +

∫ x1

0
∂1u3(s) ds = u3

in W2,2(Ω). Arguing similarly, we deduce that An → A in W1,2. We are finally in a
position to apply a diagonal argument and construct a diagonal sequence yh such
that convergences (i)–(v) hold, concluding the proof.
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Problems motivated by

dislocation theory





6
Notation and

mathematical preliminaries

6.1 Special functions

We recall here the definition and the main properties of some special functions
that we use in Chapter 7. For further details we refer to the monographs [Erd53;
Leb65].

The Gamma and the Beta functions

The Gamma function is defined as

Γ(z) :=
∫ ∞

0
e−ttz−1 dt

for z ∈ C with ℜ(z) > 0. It can be extended by analytic continuation to the whole
complex plane, except at non-positive integers. We use the following notable
properties of Γ:

(i) Γ(z + 1) = zΓ(z) for every z ∈ C, z ̸= 0,−1,−2, . . . , and in particular
Γ(n + 1) = n! for n ∈ N,

(ii) Γ(z)Γ
(

z + 1
2

)
= 21−2z√πΓ(2z) for every z ∈ C, z ̸= 0,− 1

2 ,−1,− 3
2 , . . . ,

(iii) Γ
(

1
2

)
=

√
π,

(iv) Γ(x + α) ∼ Γ(x)xα as x → ∞ for α ∈ C.

The Beta function can be defined in terms of the Gamma function as

B(x, y) :=
Γ(x)Γ(y)
Γ(x + y)

for x, y ∈ C with ℜ(x) > 0 and ℜ(y) > 0. It easily follows that B is symmetric.
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The hypergeometric function

Let α, β, γ ∈ C with γ ̸= 0,−1,−2, . . . . The hypergeometric function 2F1 is defined
as the power series

2F1(α, β; γ; z) :=
∞

∑
n=0

(α)n(β)n

(γ)nn!
zn

for z ∈ C with |z| < 1. Here (λ)n denotes the Pochhammer’s symbol, namely

(λ)0 := 1, (λ)n := λ(λ + 1) · · · · · (λ + n − 1) for n ∈ N.

If −1 < ℜ(γ − α − β), then the series converges for |z| ≤ 1, except at the point
z = 1. The behaviour near the point z = 1 depends on the parameters α, β, and γ.
More precisely, if ℜ(γ − α − β) > 0, the series extends continuously also at z = 1
(see [Erd53, Section 2.1.3–(14)] or [Leb65, Section 9.3]), and we have

lim
z→1−

2F1(α, β; γ; z) = 2F1(α, β; γ; 1) =
Γ(γ)Γ(γ − α − β)

Γ(γ − α)Γ(γ − β)
. (6.1)

If γ = α + β, from [Erd53, Section 2.3.1–(2)] we can deduce that

lim
z→1−

2F1(α, β; α + β; z)
− log(1 − z)

=
Γ(α + β)

Γ(α)Γ(β)
, (6.2)

while if ℜ(γ − α − β) < 0, from (6.1) and [Erd53, Section 2.1.4–(23)] we have

lim
z→1−

2F1(α, β; γ; z)
(1 − z)γ−α−β

=
Γ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
. (6.3)

Note that if α or β is a non-positive integer, then the hypergeometric function
reduces to a polynomial in z. In particular, it holds that

2F1(0, β; γ; z) = 1 (6.4)

and

2F1(−1, β; γ; z) = 1 − β

γ
z. (6.5)

The Appell function of the fourth kind

Let α, β, γ, γ′ ∈ C with γ, γ′ ̸= 0,−1,−2, . . . . The Appell function of the fourth
kind F4 is defined as the double power series

F4(α, β; γ, γ′; x, y) :=
∞

∑
n,m=0

(α)m+n(β)m+n

(γ)m(γ′)nn!m!
xmyn

for x, y ∈ C with
√
|x|+

√
|y| < 1. Since F4 is analytic in its domain, it follows

that
lim
x→0

F4(α, β; γ, γ′; x, y) = 2F1(α, β; γ′; y) (6.6)

for every y ∈ C with |y| < 1.
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The Bessel function of the first kind

Let ν ∈ C. The Bessel function of the first kind of order ν is defined as

Jν(x) :=
∞

∑
n=0

(−1)n(x/2)ν+2n

Γ(n + 1)Γ(n + ν + 1)

for x ∈ C \ (−∞, 0). We recall the asymptotic behavior of Jν at 0 and +∞:

Jν(x) ∼ xν

2νΓ(1 + ν)
, as x → 0+, (6.7)

Jν(x) ∼
√

2
πx

cos
(

x − π

2
ν − π

4

)
, as x → +∞, (6.8)

see [Leb65, Section 5.16]. Moreover, we use the following identity

J− 1
2
(z) =

√
2

πz
cos(z) for z ̸= 0, (6.9)

that can be found in [Leb65, Equation (5.8.4)].

6.1.1 Integral formulas

We recall here some integral formulas involving the special functions we intro-
duced.

Formula 6.1.1 [GR07, Formula 3.621–5]. We have∫ π
2

0
sinµ−1(x) cosµ−1(x) dx =

1
2

B
(µ

2
,

ν

2

)
, ℜ(µ), ℜ(ν) > 0.

Formula 6.1.2 [GR07, Formula 3.665–2]. For ℜ(µ) > 0 and |a| < 1 we have∫ π

0

sin2µ−1(x)
(1 + 2a cos(x) + a2)ν

dx = B
(

µ,
1
2

)
2F1

(
ν, ν − µ +

1
2

; µ +
1
2

; a2
)

.

Formula 6.1.3 [GR07, Formula 6.567–1]. For b > 0, ℜ(ν) > −1, and ℜ(ρ) > −1 we
have ∫ 1

0
xν+1(1 − x2)ρ Jν(bx) dx =

2ρΓ(ρ + 1)
bρ+1 Jν+ρ+1(b).

Formula 6.1.4 [Bai36, Formula 7.1]. Provided that

ℜ(λ + µ + ν + ρ) > 0, ℜ(λ) < 5
2

, c > |a|+ |b|, (6.10)

we have∫ ∞

0
xλ−1 Jν(ax)Jµ(bx)Jρ(cx) dx

=
2λ−1aνbµΓ( 1

2 (λ + µ + ν + ρ))

cλ+µ+νΓ(µ + 1)Γ(ν + 1)Γ(1 − 1
2 (λ + µ + ν − ρ))

× F4

(1
2
(λ + µ + ν − ρ),

1
2
(λ + µ + ν + ρ); µ + 1, ν + 1;

b2

c2 ,
a2

c2

)
.

Formula 6.1.5 [GR07, Formula 3.251–1]. For ℜ(µ) > 0, ℜ(ν) > 0, and λ > 0 we
have ∫ 1

0
xµ−1(1 − xλ)ν−1 dx =

1
λ

B
(µ

λ
, ν
)

.
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6.2 Fourier’s transform

We recall here the definition of the Fourier’s transform of a tempered distribution,
and a few properties that are useful for our purposes.

Let S(Rd) denote the Schwartz class of rapidly decreasing functions, namely

S(Rd) := {ϕ ∈ C∞(Rd) : sup |xβ∂αϕ(x)| < ∞, ∀ α, β multi-index},

where for a multi-index β := (β1, . . . , βd) we write xβ := ∏d
i=1 xβi . We endow

S(Rd) with the Frèchet’s topology induced by the seminorms

[ϕ]α,β := sup
x∈Rd

|xβ∂αϕ|, α, β multi-indices.

Let S ′(Rd) be the dual space of S(Rd), that is, the space of tempered distri-
butions. Following [Fol92], we define the Fourier’s transform f̂ of a function
f ∈ S(Rd) as

f̂ (ξ) :=
∫

Rd
f (x)e−ix·ξ dx (6.11)

for ξ ∈ Rd. Note that if f ∈ S(Rd) then f̂ ∈ S(Rd). If T is a tempered distribution,
its Fourier’s transform can be defined by duality, namely

⟨T̂, φ⟩ := ⟨T, φ̂⟩ ∀ ϕ ∈ S(Rd).

If f ∈ L1(Rd), then clearly f ∈ S ′(Rd), its distributional Fourier’s transform f̂ can
be identified with a C0(Rd) function, and it coincides with (6.11). A result that is
crucial for our arguments in Chapter 7 is the Fourier Inversion Theorem, that we
recall here.

Theorem 6.2.1 (Fourier Inversion Theorem). Let f ∈ L1(Rd) ∩ C0(Rd). Suppose
that f̂ ∈ L1(Rd). Then

f (x) =
1

(2π)d

∫
Rd

f̂ (ξ)eix·ξ dξ ∀ x ∈ Rd. (6.12)

For a proof, see for example [Fol92, p. 244]. As a remark, observe that the
continuity of f is a necessary condition that follows directly from (6.12).

The Fourier Inversion Theorem also holds for tempered distributions. Precisely,
if T ∈ S ′(Rd), then

⟨T, ϕ⟩ = 1
(2π)d ⟨T̂, ϕ̂−⟩ ∀ ϕ ∈ S(Rd), (6.13)

where ϕ−(x) := ϕ(−x). However, equality (6.13) holds only in the sense of dis-
tributions, while for our purposes we need a pointwise equality as in (6.12). In
the next remark, we point out that Theorem 6.2.1 still holds under slightly milder
integrability conditions for f .

Remark 6.2.2. Theorem 6.2.1 continues to hold (with equality a.e. in Equa-
tion (6.12)) if f ∈ S ′(Rd)∩ L1

loc(R
d) and f̂ ∈ L1(Rd). Firstly, note that the Fourier’s
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transform of f has to be computed in the distributional sense. However, the Four-
ier’s transform of f̂ coincides with the classical one. Moreover, by the Fourier
Inversion Theorem for tempered distributions and Fubini’s Theorem, we have that
for any test function ϕ ∈ C∞

c (Rd)∫
Rd

f (x) · ϕ(x) dx = ⟨ f , ϕ⟩ = 1
(2π)d ⟨ f̂ , ϕ̂−⟩

=
1

(2π)d

∫
Rd

f̂ (ξ) ·
∫

Rd
ϕ(−x)e−ix·ξ dx dξ

=
1

(2π)d

∫
Rd

ϕ(x)
∫

Rd
f̂ (ξ)eix·ξ dξ dx.

Then, we can conclude by the Fundamental Lemma of the Calculus of Vari-
ations. Note that the hypothesis f̂ ∈ L1(Rd) is crucial to apply Fubini’s Theorem.
Moreover, as a by-product, f must have a continuous representative.

If f is a tempered distribution that can be identified with an L1 function whose
Fourier’s transform is L1, the Parseval formula holds.

Lemma 6.2.3 (Parseval’s Formula). Let f , g ∈ L1(Rd) be such that f̂ , ĝ ∈ L1(Rd).
Then f , g, f̂ , ĝ ∈ L2(Rd) and we have∫

Rd
f (x)g(x) dx =

∫
Rd

f̂ (ξ)ĝ(ξ) dξ,

where z denotes the complex conjugate of z ∈ C.

Proof. Note that, by the Fourier Inversion Theorem 6.2.1, both f and g are continu-
ous, whereas f̂ and ĝ are continuous by definition. Thus, to show that f , g, f̂ , and ĝ
belong to L2(Rd), it is sufficient to prove that they tend to zero at infinity. Without
loss of generality, we show the argument for f . Since f̂ ∈ L1(Rd), by density
of S(Rd) there is a sequence (φn) ⊂ S(Rd) such that φn → f̂ in L1. Defining
φn
−(x) := φn(−x), by the Fourier Inversion Theorem 6.2.1 we have

sup
x∈Rd

| f (x)− φ̂n
−(x)| ≤ ∥ f̂ − φn∥L1 → 0,

that gives the uniform convergence of φ̂n
− to f . Since φ̂n

− ∈ S(Rd), we get f → 0 at
infinity.

It follows that f , g, f̂ , ĝ ∈ L2(Rd). Then, we can conclude by the following
chain of equalities:

∫
Rd

f (x)g(x) dx =
∫

Rd
f (x)g(x) dx =

∫
Rd

[∫
Rd

f̂ (ξ)eix·ξ dξ

]
g(x) dx

=
∫

Rd

∫
Rd

f̂ (ξ)e−ix·ξ g(x) dξ dx =
∫

Rd
f̂ (ξ)ĝ(ξ) dξ,

where we have applied the Fourier Inversion Theorem 6.2.1 and Fubini’s Theorem.
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Remark 6.2.4. Lemma 6.2.3 also holds requiring different regularities for f and g.
This is clear observing the proof. Indeed, we just need to grant that the L2 inner
product is well-defined, that the hypothesis of the Fourier Inversion Theorem are
satisfied by one of the functions, and that we can apply Fubini’s Theorem. For
example, suppose that f ∈ L1

loc(R
d) ∩ S ′(Rd), g ∈ L1(Rd) with compact support

and f̂ , ĝ ∈ L1(Rd). Then, the integral∫
Rd

f (x)g(x) dx

is well-defined, by Remark 6.2.2 the Fourier Inversion Theorem holds for f , and
since both f̂ , g ∈ L1(Rd) and e−ix·ξ ∈ L∞(Rd ×Rd) we can apply Fubini’s Theorem
to change the order of integration.

In Chapter 7, we compute various Fourier’s transforms. If f is a radial function,
we resort to the following formula.

Formula 6.2.5. If f is a radial function, that is, f (x) = f0(|x|) for some f0, then so is f̂
and we have

f̂ (ξ) =
(2π)

d
2

|ξ| d
2 −1

∫ ∞

0
f0(r)J d

2 −1(r|ξ|)r
d
2 dr. (6.14)

We refer to [Fol92, eq. (7.38)] for a proof. Formula 6.2.5 can be applied also
to more general objects with a radial symmetry. As an example, consider µ :=
Hd−1 ∂B1. One may be tempted to apply (6.14) with f0(r) := δ1(r), interpreting
the integral in a distributional sense. Indeed, we have that

µ̂(ξ) =
(2π)

d
2

|ξ| d
2 −1

J d
2 −1(|ξ|). (6.15)

This can be obtained, for example, following the computation in [Gra08, Appendix
B.4].

Another class of tempered distributions whose properties are preserved by
the Fourier’s transform are the homogeneous ones. We say that a tempered
distribution T ∈ S ′(Rd) is α-homogeneous if, for every test function ϕ ∈ C∞

c and
for every λ ∈ R we have

⟨T, ϕλ⟩ = λ−α⟨T, ϕ⟩,
where ϕλ(x) := λdϕ(λx). The Fourier’s transform maps α-homogeneous tempered
distributions to (−d − α)-homogeneous tempered distributions. Indeed, we have
the following Lemma.

Lemma 6.2.6. Let T ∈ S ′(Rd) be an α-homogeneous tempered distribution. Then T̂ is a
(−d − α)-homogeneous tempered distribution.

Proof. Set ϕλ(x) := λdϕ(λx) for some ϕ ∈ C∞
c (Rd) and λ ∈ R. We have

ϕ̂λ(ξ) =
∫

Rd
ϕλ(x)e−ix·ξ dx = λd

∫
Rd

ϕ(λx)e−ix·ξ dx =
∫

Rd
ϕ(y)e−iy· ξ

λ dy

= ϕ̂

(
ξ

λ

)
= λd(ϕ̂)λ−1(ξ).
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Then,

⟨T̂, ϕλ⟩ = ⟨T, ϕ̂λ⟩ = λd⟨T, (ϕ̂)λ−1⟩ = λd+α⟨T, ϕ̂⟩ = λd+α⟨T̂, ϕ⟩.

In Chapter 7, we consider an interaction kernel defining a (−α)-homogeneous
tempered distribution, with α ∈ (0, d). It follows that its Fourier’s transform
is (α − d)-homogeneous. It is useful to note that in that case, it is enough to
consider the restriction of the Fourier’s transform to Rd \ {0}. Recall that given a
distribution T ∈ D′(Rd), its restriction to an open set A ⊂ Rd is a distribution in
D′(A).

Lemma 6.2.7. Let T be a (−α)-homogeneous tempered distribution with α ∈ (0, d).
Suppose that T

∣∣
Rd\{0} can be identified with a function f ∈ L1

loc(R
d \ {0}). Then

f ∈ L1
loc(R

d) and T = f , in the sense that

⟨T, ϕ⟩ =
∫

Rd
f (x)ϕ(x) dx ∀ ϕ ∈ C∞

c (Rd).

Proof. Note that f is (−α)-homogeneous in the classical sense. In particular, since
α ∈ (0, d), it is integrable near the origin, thus f ∈ L1

loc(R
d). Define the distribution

G := T − f , that is

⟨G, ϕ⟩ := ⟨T, ϕ⟩ −
∫

Rd
f (x)ϕ(x) dx ∀ ϕ ∈ C∞

c (Rd).

Note that G = 0 on Rd \ {0}. In particular, the support of G is contained in
the singleton {0}. By a classical result on distributions (see for example [GS16b,
Chapter II Section 4.5]), G has the following form:

G = ∑
|β|≤m

λβDβδ0,

for some m ∈ N and λβ ∈ R, where β is a multi-index. Note that G is (−α)-
homogeneous. Since Dβδ0 is (−d − |β|)-homogeneous and homogeneous distri-
butions with different homogeneity are linearly independent (see, for example,
[GS16a, Chapter I Section 3.11]) it follows that λβ = 0 for all |β| ≤ m, concluding
the proof.

An example of homogeneous tempered distribution that we use in Chapter 7,
is pk(x)|x|−s−k, where pk is a harmonic homogeneous polynomial of degree k. In
the next Lemma, we compute its Fourier’s transform following [Ste71].

Lemma 6.2.8. Let pk be a homogeneous harmonic polynomial of degree k ≥ 0. Let
s ∈ (0, d). Then, the Fourier’s transform of pk(x)|x|−s−k is the map

ξ 7→ (−i)k2d−sπ
d
2

Γ( k+d−s
2 )

Γ( k+s
2 )

pk(ξ)

|ξ|k+d−s . (6.16)
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For a proof of Lemma 6.2.8, we refer to [Ste71, Chapter II Equation (33)]. Note
that Equation (33) holds for k ≥ 0, even if it is stated in [Ste71, Theorem 5], only
for k ≥ 1. We also point out that [Ste71] uses a slightly different definition of
Fourier’s transform, thus the coefficients in (6.16) are different from the ones in
[Ste71, Equation (33)].

In the rest of the section we recall a few properties of the Fourier’s transform of
Radon measures. Let µ ∈ Mb(R

d) be a finite Radon measure in Rd with compact
support. It is easy to see that µ ∈ S ′(Rd). By definition of Fourier’s transform and
an application of Fubini’s Theorem

⟨µ̂, ϕ⟩ = ⟨µ, ϕ̂⟩ =
∫

Rd

∫
Rd

ϕ(x)e−ix·ξ dx dµ(ξ) =
∫

Rd
ϕ(x)

∫
Rd

e−ix·ξ dµ(ξ) dx.

Since the map

x 7→
∫

Rd
e−ix·ξ dµ(ξ)

is smooth by Dominated Convergence Theorem, we have µ̂ ∈ C∞(Rd). Note that
a stronger result holds in a more general setting: the Fourier’s transform of a
compactly supported distribution is analytic (see [Hör76, Theorem 1.7.5]).

Recall that given two distributions F, T ∈ D′(Rd), where T has compact
support, the convolution F ∗ T is well-defined as an element of D′(Rd) (see, for
example, [Hör76, Definition 1.6.2]). Precisely, it is the unique distribution G ∈
D′(Rd) such that

F ∗ (T ∗ ϕ) = G ∗ ϕ ∀ ϕ ∈ C∞
c (Rd).

If F happens to be also a tempered distribution, then F ∗ T ∈ S ′(Rd). In the last
case, it holds that F̂ ∗ T = F̂ T̂, see [Hör76, Theorem 1.7.6]. Note that the product
F̂T̂ is well defined as a distribution, since T̂ ∈ C∞(Rd).

6.3 Spherical harmonics and Sobolev spaces on sphere

We recall here some results on spherical harmonics and on Sobolev spaces on the
sphere. As it is customary, we write Sd−1 for the (d − 1)-dimensional sphere in
Rd. We use ∆Sd−1 (or ∆S if there is no ambiguity on the dimension) to denote the
Laplace–Beltrami operator on Sd−1. Recall that ∆Sd−1 can be defined as

∆Sd−1 f (x) := ∆g(x), (6.17)

where ∆ is the standard Euclidean Laplacian and g(x) := f (x/|x|).
A spherical harmonic of degree n, usually denoted as Yn, is the restriction to the

sphere of a harmonic homogeneous polynomial of degree n. Despite its name, Yn is
not harmonic on the sphere in the sense of the Laplace–Beltrami operator, meaning
that ∆Sd−1Yn ̸= 0. This is clear by identity (6.17). However, Yn is an eigenfunction
of −∆Sd−1 with eigenvalue n(n + d − 2), that is

−∆Sd−1Yn = n(n + d − 2)Yn. (6.18)

Clearly, spherical harmonics are continuous functions on Sd−1. In particular, since
Sd−1 is compact, they are bounded. In Chapter 7, we use the following explicit
bound, depending on n and d.
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Lemma 6.3.1. Any spherical harmonic Yn of degree n satisfies

∥Yn∥L∞ ≤
√

Γ
(

d
2

)
N(n, d)

2π
d
2

∥Yn∥L2 ,

where N(n, d) is the number of linearly independent homogeneous harmonic polynomials
of degree n in d variables.

A proof can be found in [EF14, Proposition 4.16]. Next, we recall the explicit
expression of N(n, d).

Lemma 6.3.2. We have

N(n, d) =
2n + d − 2

n

(
n + d − 3

n − 1

)
=

2n + d − 2
n

Γ(n + d − 2)
Γ(n)Γ(d − 1)

.

We refer to [EF14, Theorem 4.4] for a proof.
By an application of the Gram–Schmidt algorithm, we can construct a set

{Yi
n}i=1,...,N(n,d) of spherical harmonics of degree n that are orthonormal in the L2

sense, i.e., ∫
Sd−1

Yi
nY j

n dHd−1 = δij,

where δij is the Kronecker’s delta and Hd−1 is the (d − 1)-dimensional Hausdorff’s
measure. Moreover, the set{

Yi
n : n ∈ N, i = 1, . . . , N(n, d)

}
is an orthonormal basis of L2(Sd−1).

We move now to the definition of Sobolev’s spaces on the sphere. Given a
function f ∈ L2(Sd−1), where L2 is to be intended with respect to the (d − 1)-
dimensional Hausdorff’s measure, we can write f in spherical harmonics as

f =
∞

∑
n=0

N(n,d)

∑
i=1

λi
nYi

n. (6.19)

By Parseval’s identity,

∥ f ∥2
L2 =

∞

∑
n=0

N(n,d)

∑
i=1

(λi
n)

2.

Inspired by (6.18), we define the action of the fractional Laplace–Beltrami operator
on f as

(−∆Sd−1)α f :=
∞

∑
n=0

N(n,d)

∑
i=1

[n(n + d − 2)]αλi
nYi

n. (6.20)

Clearly, the series on the right-hand side of (6.20) might not be convergent. We
define the space Wα,2(Sd−1) as the set of functions f ∈ L2(Sd−1) such that

(−∆Sd−1)
α
2 f ∈ L2(Sd−1).
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Decomposing f ∈ L2(Sd−1) as in (6.19), by Parseval’s identity we equivalently
have that f ∈ Wα,2(Sd−1) if and only if

∞

∑
n=0

N(n,d)

∑
i=1

[n(n + d − 2)]α(λi
n)

2 < ∞.

We endow Wα,2(Sd−1) with the norm

∥ · ∥Wα,2 := ∥ · ∥L2 + ∥(−∆Sd−1)
α
2 (·)∥L2 .

Theorem 6.3.3. The space Wα,2(Sd−1) is continuously embedded in C0(Sd−1) for α >
(d − 1)/2.

Proof. It is sufficient to show that

∥ f ∥L∞ ≤ C∥ f ∥Wα,2 . (6.21)

Indeed, by definition, any function in Wα,2(Sd−1) can be written in spherical
harmonics as

f =
∞

∑
n=0

N(n,d)

∑
i=1

λi
nYi

n,

with
∞

∑
n=0

N(n,d)

∑
i=1

(λi
n)

2 < ∞,
∞

∑
n=0

N(n,d)

∑
i=1

[n(n + d − 2)]α(λi
n)

2 < ∞.

Since spherical harmonics are continuous, f is the Wα,2-limit of continuous func-
tions, and by (6.21) the limit is also uniform. Thus, f is continuous and by (6.21) the
embedding is continuous. To prove (6.21), we proceed explicitely. By Lemma 6.3.1
and Hölder’s inequality, we have

∥ f ∥L∞ ≤
∞

∑
n=0

∥∥∥∥∥N(n,d)

∑
i=1

λi
nYi

n

∥∥∥∥∥
L∞

≤
∞

∑
n=0

√
Γ
(

d
2

)
N(n, d)

2π
d
2

∥∥∥∥∥N(n,d)

∑
i=1

λi
nYi

n

∥∥∥∥∥
L2

=
∞

∑
n=0

√
Γ
(

d
2

)
N(n, d)

2π
d
2

(
N(n,d)

∑
i=1

|λi
n|2
) 1

2

≤ C
∞

∑
n=0

√
N(n, d)

[n(n + d − 2)]
α
2
[n(n + d − 2)]

α
2

(
N(n,d)

∑
i=1

|λi
n|2
) 1

2

≤ C

(
∞

∑
n=0

N(n, d)
[n(n + d − 2)]α

) 1
2

∥(∆Sd−1)
α
2 f ∥L2

≤ C

(
∞

∑
n=0

N(n, d)
[n(n + d − 2)]α

) 1
2

∥ f ∥Wα,2 .

We are left to prove that

∞

∑
n=0

N(n, d)
[n(n + d − 2)]α

< ∞. (6.22)
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By Lemma 6.3.2 and the asymptotics of the Gamma function (iv) in Section 6.1 we
have

N(n, d) ∼ nd−2, n → ∞.

Hence, since α > (d − 1)/2, (6.22) holds.

6.4 Capacity

In this brief section we recall the notion of capacity of a set and its basic properties.
We refer to [Lan72] for a complete treatment. Let s ∈ (0, d) and let K ⊂ Rd be
compact set. Define

IK
iso,s(µ) :=

∫
Rd

∫
Rd

|x − y|−s dµ(x) dµ(y), µ ∈ P(K).

It is a classical result in potential theory that either IK
iso,s ≡ +∞, or IK

iso,s admits a
unique minimizer µK. For the existence, one can argue by the Direct Method of the
Calculus of Variations. Indeed, any minimizing sequence µn admits a subsequence
converging narrowly (recall that all the measures µn have a common compact
support), so that the narrow limit µ is a probability measure on K. Since IK

iso,s is
weak-star lower semicontinuous (see, for example, [Lan72, Equation (1.4.5)]), µ is
a minimizer. A proof of the uniqueness can be found in [Lan72, pp. 131–133], but
can also be deduced as a corollary of Theorem 7.2.1.

We define the s-capacity of K as

Caps(K) :=
1

min
µ∈P(K)

IK
iso,s(µ)

,

with the convention that Caps(K) := 0 if IK
iso,s ≡ +∞. Note that we are not using

the notation of [Lan72], where Caps is called (d − s)-capacity. For a general set
E ⊂ Rd, one can define the inner and outer s-capacity as follows:

Caps(E) := sup
{

Caps(K) : K ⊂ E compact
}

,

Caps(E) := inf
{

Caps(G) : E ⊂ G open
}

.

A set E ⊂ Rd is said to be s-capacitable if Caps(E) = Caps(E), in that case we
just write that its s-capacity is Caps(E). One can prove that every Borel set is
s-capacitable (see [Lan72, Theorem 2.8]).

6.5 Circulation and curl

We conclude the chapter recalling some simple results regarding the curl of a
matrix-valued field. Let Ω ⊂ R2 be a bounded and Lipschitz domain. Given a
matrix field β ∈ L1

loc(Ω; R2×2), we define the distributional curl of its nth column,
for n = 1, 2, as the distribution

⟨curl(βen), ϕ⟩ :=
∫

Ω
βen · J∇ϕ dx, ϕ ∈ C∞

c (Ω),
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where

J :=
(

0 −1
1 0

)
.

Then, one can define the vector-valued distribution curl(β) as the vector whose
nth element is curl(βen). When the field β is smooth, then Stokes’ Theorem gives∫

Ω
curl(β) dx =

∫
∂Ω

βt dH1,

where t is the tangent vector1 to ∂Ω. The last integral is usually called the circula-
tion of β over ∂Ω. As it is usually done in classical trace theory, one can define a
tangent trace for matrix-valued fields in the following space:

L2
curl(Ω; R2×2) = {β ∈ L2(Ω; R2×2) : curl(β) ∈ L2(Ω; R2)}.

Precisely, there exists a unique continuous operator

Tt : L2
curl(Ω; R2×2) → W− 1

2 ,2(∂Ω; R2)

such that, for
β ∈ C0(Ω; R2×2) ∩ L2

curl(Ω; R2×2),

it holds Tt(β) = β
∣∣
∂Ωt, where t is the tangent vector to ∂Ω (see, for example,

[RJ99, Chapter IX, Theorem 2]). The Stokes’ theorem holds in L2
curl(Ω; R2×2) in the

distributional sense, that is∫
Ω

curl(β) · ϕ dx =
∫

Ω
βJ∇ϕ dx + ⟨Tt(β), T(ϕ)⟩

for every ϕ ∈ W1,2(Ω; R2) and β ∈ L2
curl(Ω; R2×2), where T is the standard trace

operator on W1,2.
When ∂Ω is the union ot two connected components γ1 and γ2, then one can

identify W− 1
2 ,2(∂Ω; R2) with

W− 1
2 ,2(γ1; R2) + W− 1

2 ,2(γ2; R2).

The Stokes’ theorem becomes∫
Ω

curl(β) · ϕ dx =
∫

Ω
βJ∇ϕ dx + ⟨Tγ1

t (β), Tγ1(ϕ)⟩+ ⟨Tγ2
t (β), Tγ2(ϕ)⟩.

It follows that, if β ∈ L2
curl(Ω; R2×2) has zero curl, then

⟨Tγ1
t (β), Tγ1(ϕ)⟩ = −⟨Tγ2

t (β), Tγ2(ϕ)⟩,

that, in some cases, can be interpreted as the classical principle of path equivalence
for conservative fields.

If Ω is simply connected and β ∈ L2
curl(Ω; R2×2) has zero curl, by a simple

approximation argument one can show that β = ∇P, for some potential P ∈
W1,2(Ω; R2). If Ω is not simply connected, then one has β = ∇P only locally in Ω.

1The orientation of the tangent vector t is chosen taking the outer normal vector and rotating it
counterclockwise by π/2.
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In Chapter 8, we are interested in fields β that are piecewise constant on a
finite polyhedral Cacciopoli’s partition. Recall that a Cacciopoli’s partition is a
partition of Ω consisting of sets with finite perimeter. In this case, curl(β) can only
concentrate on the straight interfaces between the elements of the partition. In the
next simple Lemma, we clarify the cases where no curl concentrates at an interface.

Lemma 6.5.1. Let Ω ⊂ R2 be an open set and let {Pi : i = 1, . . . n} be a finite polyhedral
Caccioppoli’s partiton, that is,

1. Ω = ∪n
i=1Pi and Per(Pi) < +∞,

2. Pi is a polyhedron with boundary given by straight interfaces S1,i, . . . , Sni ,i,

3. Pi ∩ Pm is either empty or is a common interface Sj,i = Sk,m when i ̸= m.

Let σ : N × N → N × N be such that Sj,i = Sσ(j,i). Let β : Ω → R2×2 be a
matrix-valued field piecewise constant on the partition {Pi}, that is, β ≡ Mi on Pi. Then

curl(β) = −
n

∑
i=1

ni

∑
j=1

Miνj,iH1 Sj,i,

where νj,i is the tangent vector obtained by rotating counterclokwisely of π/2 the unit
normal to Sj,i pointing outside of Pi. In particular, if (Mi − Mm)νj,i = 0 for some j and
m such that σ(j, i) = (k, m), then Sj,i = Sσ(j,i) is not contained in the support of curl β.

Proof. By an application of Stokes’ Theorem, we have that for every ϕ ∈ C∞
c (Ω; R2)

⟨curl(β), ϕ⟩ =
n

∑
i=1

∫
Pi

Mi J∇ϕ dx = −
n

∑
i=1

∫
∂Pi

Mit · ϕH1

= −
n

∑
i=1

ni

∑
j=1

∫
Sj,i

Miνj,i · ϕ dH1,

concluding the proof.





7
Nonlocal anisotropic

energies with physical
confinement

7.1 Assumptions and main results

Let P(Rd) be the space of probability measures on Rd, d ≥ 2. We consider the
repulsive interaction energy

Is(µ) :=
∫

Rd

∫
Rd

Ws(x − y) dµ(x)dµ(y)

for µ ∈ P(Rd), where the interaction kernel Ws, for s ∈ (0, d), is of the form

Ws(x) :=
1
|x|s Φ

(
x
|x|

)
(7.1)

for x ̸= 0. Here, the profile Φ : Sd−1 → R is a continuous, even, and strictly
positive function.

Given a compact set E ⊂ Rd, we define the confinement potential

VE(x) :=

{
0 if x ∈ E,
+∞ otherwise.

The attractive-repulsive energy we study is then

IE
s (µ) := Is(µ) +

∫
Rd

VE(x) dµ(x)

for µ ∈ P(Rd). Clearly, minimizing IE
s over P(Rd) is equivalent to minimizing Is

over the set of measures µ ∈ P(Rd) with supp µ ⊂ E.
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For the choices E := B1 and Φ ≡ 1 we denote IB1
s as IB1

iso,s. The minimizer of

IB1
iso,s is given by

µiso,s :=

{
cs,d(1 − |x|2) s−d

2 Ld(x) B1 if d − 2 < s,
cs,dHd−1 ∂B1 if s ≤ d − 2,

where cs,d is a normalization constant (see Lemma 7.3.1 for its exact value).
We focus on super-Coulombic interactions s ≥ d− 2, and confining sets E given

by ellipsoids. Our main result is the following.

Theorem 7.1.1. Let d ≥ 2, s ∈ [d − 2, d), and let Ws be as in (7.1) with Φ : Sd−1 → R

a continuous, even, and strictly positive function. Assume that Ŵs is continuous and
non-negative on Rd \ {0}. Let E ⊂ Rd be an ellipsoid of the form E := RDB1 for
some R ∈ SO(d) and some positive-definite d × d diagonal matrix D, and let TE be the
map TE(x) := RDx for x ∈ Rd. Then the unique minimizer of IE

s over P(Rd) is the
push-forward of the measure µiso,s by the map TE, that is, the probability measure

µE
s :=

|E|−1 Γ(1 + s
2 )

Γ(1 + d
2 )Γ(1 +

s−d
2 )

(1 − |D−1RTx|2)
s−d

2 Ld(x) E if d − 2 < s,(
Hd−1(∂B1)det D

)−1|D−2RTx|−1Hd−1(x) ∂E if s = d − 2.

Surprisingly, the minimizing measure µE
s is completely independent of the

profile Φ, and its support is fully determined by the confinement term. It is
natural to ask whether this phenomenon occurs also in the sub-Coulombic regime
s < d − 2. In Section 7.4 we give a negative answer to this question: we consider
E := B1, and we show that, for a suitable profile Φ, the measure cs,dHd−1 ∂B1

does not satisfy the Euler–Lagrange conditions for IB1
s when s < d − 2.

Figure 7.1: Approximated optimal distributions for d := 3 and
s := 1/10, with profiles Φ ≡ 1 (left) and Φ := 1 + x2

1 (right).

Hence, for 0 < s < d − 2 the anisotropy Φ does play a role in determining the
energy minimizers, unlike for s ≥ d − 2 (see Figure 7.1).
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7.2 Existence and uniqueness of minimizers

We start the chapter by proving the existence and uniqueness of minimizers and
their characterization. This result is by now standard, but for the convenience of
the reader we give a self-contained proof.

Theorem 7.2.1. Let Ws be a kernel of the form (7.1)with s ∈ (0, d) and let Φ : Sd−1 → R

be a continuous, even, and strictly positive function. Assume that Ŵs is continuous and
non-negative on Rd \ {0}. Let E ⊂ Rd be a compact set of positive s-capacity. Then the
functional IE

s has a unique minimizer µ over P(Rd). Moreover, µ is the unique measure
in P(Rd) for which there exists a constant C > 0 such that

supp µ ⊂ E, (EL1)

(Ws ∗ µ)(x) = C for µ-a.e. x ∈ supp µ, (EL2)

(Ws ∗ µ)(x) ≥ C for every x ∈ E \ N with Caps(N) = 0. (EL3)

Proof. Existence. Since Φ is continuous and strictly positive there exists a constant
C > 0 such that

Is(µ) ≤ C
∫

Rd
|x − y|−s dµ(x) dµ(y) ∀ µ ∈ P(E).

In particular, since Caps(E) > 0, infµ∈P(Rd) IE
s (µ) < +∞.

To prove existence we use the Direct Method of the Calculus of Variations.
Let (µn) ⊂ P(Rd) be a minimizing sequence. Without loss of generality we can
assume that µn has support contained in E for every n ∈ N. Then, the sequence
(µn) is tight, and so, up to a subsequence, it converges narrowly to some measure
µ. In particular, µ is a probability measure and has support contained in E. Since
Is is lower semicontinuous with respect to the weak-star topology of Mb(R

d), we
conclude (see, for example, [Lan72, Equation (1.4.5)]).

Uniqueness. We move now to the uniqueness of minimizers. The objective
is to show that Is is strictly convex on the set of probability measures with finite
interaction energy and compact support. Since any minimizer belongs to this set,
as a by-product we get uniqueness. Firstly, note that Ws is a tempered distribution,
and by Lemma 6.2.7 we can identify Ŵs with its continuous restriction to Rd \ {0}.
We show that, given two probability measures µ1, µ2 ∈ P(Rd) with compact
support such that Is(µ1), Is(µ2) < ∞ and µ1 ̸= µ2, it holds∫

Rd
Ws ∗ (µ1 − µ2) d(µ1 − µ2) > 0. (7.2)

Indeed, if this is the case, we immediately deduce strict convexity noting that, for
t ∈ (0, 1),

Is(tµ1 + (1 − t)µ2)− tIs(µ1)− (1 − t)Is(µ2)

= −t(1 − t)
∫

Rd
Ws ∗ (µ1 − µ2) d(µ1 − µ2) < 0.

In order to prove (7.2) we start by showing that, for every finite positive measure
µ ∈ Mb(R

d) with compact support, it holds∫
Rd

Ws ∗ µ dµ =
∫

Rd
Ŵs(ξ)|µ̂(ξ)|2 dξ, (7.3)
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where the equality is to be understood in the sense that either both sides are finite
and coincide or both sides are equal to +∞.

Let (ρε) be a family of standard mollifiers and define µε := µ ∗ ρε. The first
step is to prove (7.3) for µε. Note that µε ∈ C∞

c (Rd) so that µε ∈ S(Rd). Moreover,
since Ws is a tempered distribution and µε has compact support, the convolution
Ws ∗ µε ∈ S ′(Rd) and Ŵs ∗ µε = Ŵsµ̂ε (see also Section 6.2). Since Ŵs is (s − d)-
homogeneous, it behaves as |ξ|s−d at infinity. Then, by the fact that µ̂ε ∈ S(Rd),
we have Ŵsµ̂ε ∈ L1(Rd). Thus, we are in a position to apply Parseval’s Formula
(see Lemma 6.2.3 and Remark 6.2.4) and deduce that∫

Rd
(Ws ∗ µε)(x)µε(x) dx =

∫
Rd

Ŵs(ξ)µ̂ε(ξ)µ̂ε(ξ) dξ

=
∫

Rd
Ŵs(ξ)|µ̂ε(ξ)|2 dξ,

(7.4)

where we have used the fact that Ŵs is real by parity. This concludes the proof of
(7.3) for µε.

We wish now to pass to the limit as ε → 0. Firstly, note that µ̂ε = µ̂ρ̂ε. Indeed,
µ has compact support and ρε is a Schwarz function. Moreover, ρ̂ε(x) = ρ̂1(εx), by
definition of standard mollifier. Thus, µ̂ε → µ̂ pointwise. Note also that |ρ̂ε(ξ)| ≤ 1.
We distinguish two cases: if Ŵs|µ̂|2 ∈ L1(Rd), then we can pass to the limit in the
right-hand side of (7.4) by Dominated Convergence Theorem; otherwise, we apply
Fatou’s Lemma to deduce that the limit is +∞ (recall that Ŵs ≥ 0). In any case,
we have ∫

Rd
Ŵs(ξ)|µ̂ε(ξ)|2 dξ →

∫
Rd

Ŵs(ξ)|µ̂(ξ)|2 dξ.

For the left-hand side, we note that∫
Rd

(Ws ∗ µε)(x)µε(x) dx =
∫

Rd
(Ws ∗ ρε ∗ ρε)(x − y) dµ(x) dµ(y). (7.5)

Let ηε := ρε ∗ ρε. It is immediate to show that ηε(x) = ε−d(ρ ∗ ρ)(x/ε) and that ρ ∗ ρ
satisfies all the properties of a standard mollifier: it is radial, smooth with compact
support, bounded by 1, and has integral equal to 1. Thus, without loss of generality,
we can suppose that (ηε) is a family of standard mollifiers. In particular, since Ws
is continuous outside the origin, Ws ∗ ηε → Ws everywhere in Rd \ {0}. Let us
denote by W iso

s the isotropic Riesz Kernel W iso
s (x) := |x|−s. Since the anisotropy

profile Φ is continuous on Sd−1 and strictly positive, there is a constant C > 0 such
that

1
C
W iso

s (x) ≤ Ws(x) ≤ CW iso
s (x). (7.6)

In particular, for ε < 1 and x ̸= 0, we have

(Ws ∗ ηε)(x) =
∫

Bε(x)
Ws(y)ηε(x − y) dy ≤ C

∫
B1(0)

W iso
s (εy − x) dy

≤ Cε−s
∫

B1(0)
W iso

s (y − x/ε) dy = CW iso
s (x)

∫
B1(0)

|x/ε|s
|y − x/ε|s dy

≤ C2Ws(x)
∫

B1(0)

|x/ε|s
|y − x/ε|s dy =: CWs(x) f (x/ε).
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We show that f is bounded, which gives that Ws ∗ ηε is dominated by Ws. Indeed,
for |x| > M, with M > 0 sufficiently large, we have

f (x) =
∫

B1(0)

|x|s
|y − x|s dy ≤

∫
B1(x)

|x|s
|y|s dy ≤

∫
B1(x)

|x|s
(|x| − 1)s dy ≤ C.

Instead, for |x| ≤ M

f (x) ≤ Ms
∫

B1(0)

1
|y − x|s dy = Ms

∫
B1(x)

1
|ys| dy ≤ Ms

∫
BM+1(0)

1
|y|s dy ≤ C.

Thus, the supremum of f is finite and so is bounded. As before, we distinguish
two cases: if (x, y) 7→ Ws(x − y) is integrable with respect to the product measure
µ ⊗ µ, then we apply Dominated Convergence Theorem; otherwise, we resort to
Fatou’s Lemma. In any case, passing to the limit in the left-hand side of (7.4) (recall
also (7.5)) we get ∫

Rd
(Ws ∗ µε)(x)µε(x) dx →

∫
Rd

(Ws ∗ µ) dµ.

In particular, we have proved (7.3) for finite positive measures µ. We show now
that (7.3) holds also for a signed measure of the form µ1 − µ2, with µ1, µ2 being
two finite and positive measures with finite interaction energy. First, observe that
by (7.3) ∫

Rd
Ws ∗ (µ1 + µ2) d(µ1 + µ2) =

∫
Rd

Ŵs|µ̂1 + µ̂2|2 dξ. (7.7)

Expanding both sides of (7.7), recalling that both µ1 and µ2 have finite interaction
energy, and applying once again (7.3), we get∫

Rd
Ws ∗ µ1 dµ2 =

∫
Rd

Ws ∗ µ2 dµ1 =
∫

Rd
Ŵsℜ

(
µ̂1µ̂2

)
dξ. (7.8)

Then, by (7.8), and a further application of (7.3), we deduce∫
Rd

Ws ∗ (µ1 − µ2) d(µ1 − µ2) =
∫

Rd
Ws ∗ µ1 dµ1 +

∫
Rd

Ws ∗ µ2 dµ2

− 2
∫

Rd
Ws ∗ µ1 dµ2 =

∫
Rd

Ŵs|µ̂1|2 dξ

+
∫

Rd
Ŵs|µ̂2|2 dξ − 2

∫
Rd

Ŵsℜ
(
µ̂1µ̂2

)
dξ

=
∫

Rd
Ŵs|µ̂1 − µ̂2|2 dξ.

(7.9)

We are left to prove (7.2). If Ŵs > 0, then by (7.9) we are done. However, some care
is needed if Ŵs ≥ 0. Note that we have Ŵs ̸= 0, since Ws ̸= 0. In this case, we
show that for any measure µ with compact support the set of zeros

Z(µ̂) := {ξ ∈ Rd : µ̂(ξ) = 0}

has zero Lebesgue measure. Then, (7.2) follows immediately by (7.9). It is well-
known that the zero set of any analytic function has zero Lebesgue measure. For a
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simple proof of this fact, we refer to [Mit20]. As we already recalled in Section 6.2,
the Fourier’s transform of a compactly supported distribution can be extended
to the whole Cd, and this extension is entire. This in particular implies that its
restriction to Rd is analytic.

Euler–Lagrange equations. We start by showing that the minimizer µ satisfies
the Euler–Lagrange equations. Note that, since min IE

s < +∞, µ has support con-
tained in E, in other words (EL1) holds and the support of µ is compact. Consider
the variations (1 − ε)µ + εν, where ν ∈ P(Rd) has support contained in E and
finite interaction energy Is(ν) < +∞. Then, by minimality, for every ε ∈ (0, 1)

Is(µ) ≤ Is((1 − ε)µ + εν),

from which we deduce

ε2
∫

Rd
Ws ∗ (µ − ν) d(µ − ν) + 2ε

∫
Rd

Ws ∗ µ dν − 2ε
∫

Rd
Ws ∗ µ dµ ≥ 0. (7.10)

Note that we have used the following rewriting of the energy

Is(µ) =
∫

Rd
Ws(x − y) dµ(x) dµ(y) =

∫
Rd

(Ws ∗ µ)(x) dµ(x).

If ∫
Rd

Ws ∗ (µ − ν) d(µ − ν),
∫

Rd
Ws ∗ µ dν < +∞, (7.11)

we divide (7.10) by ε and we pass to the limit as ε → 0, obtaining∫
Rd

Ws ∗ µ dν ≥
∫

Rd
Ws ∗ µ dµ =: C. (7.12)

Note that (7.12) holds regardless of the validity of (7.11), since µ has finite interac-
tion energy. We show now that (7.12) implies (EL3). Suppose by contradiction that
the set

A := {x ∈ Rd : (Ws ∗ µ)(x) < C} ∩ E

has positive s-capacity. Note that it is s-capacitable since it is a Borel set. Then, by
definition of capacity (see Section 6.4), for n ≫ 1 the set

K :=
{

x ∈ Rd : (Ws ∗ µ)(x) ≤ C − 1
n

}
∩ E (7.13)

has positive s-capacity, and by lower semicontinuity of Ws ∗ µ (see [Lan72, Lemma
0.1]) it is compact. By definition of C in (7.12), there exists a Borel set B with positive
measure, disjoint from K, such that

(Ws ∗ µ)(x) > C − 1
2n

, µ-a.e. in B.

By definition of s-capacity of a compact set, there exists a measure ν̄ ∈ P(K) such
that

Caps(K)
−1 =

∫
Rd

|x − y|−s dν̄(x) dν̄(y) < +∞.

Define, for ε ≪ 1, the probability measure

ν := µ + εµ(B)ν̄ − εµ B.
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Then, by (7.12)

C =
∫

Rd
Ws ∗ µ dµ ≤

∫
Rd

Ws ∗ µ dν = C + εµ(B)
∫

Rd
Ws ∗ µ dν̄ − ε

∫
B
Ws ∗ µ dµ

≤ C + εµ(B)
(

C − 1
n

)
− εµ(B)

(
C − 1

2n

)
≤ C − εµ(B)

2n
,

giving a contradiction.
We show now that (EL2) is a consequence of (EL3) and the definition of C.

Firstly, observe that (EL3) holds µ-a.e.. Indeed, suppose by contradiction that the
set A is such that µ(A) > 0, while being of zero s-capacity. Then, for n ≫ 1, the
compact set K as defined in (7.13) has zero capacity and satisfies µ(K) > 0. By
(7.6), since IE

s (µ) < +∞, we immediately deduce that Iiso,s(µ) < +∞. Thus, the
probability measure ν := (µ(K))−1µ K has finite interaction energy Iiso,s(ν) <
+∞, contradicting the zero capacity of K. Therefore, µ(A) = 0. By definition of C,

C =
∫

Rd
Ws ∗ µ dµ = Cµ({x ∈ Rd : (Ws ∗ µ)(x) = C}) +

∫
{Ws∗µ>C}

Ws ∗ µ dµ.

If
µ({x ∈ E : (Ws ∗ µ)(x) > C}) > 0,

we have a contradiction.
To conclude the proof we show that (EL1)–(EL3) imply minimality. Let µ̄, µ ∈

P(Rd) satisfy (EL1)–(EL3) for some constants C̄, C > 0, respectively. Integrating
(EL2) we deduce that

C̄ =
∫

Rd
Ws ∗ µ̄ dµ̄,

C =
∫

Rd
Ws ∗ µ dµ.

For ε ∈ (0, 1), define µε := εµ + (1 − ε)µ̄. Arguing as before, we can show that
(EL3) holds also µ-a.e. (resp. µ̄-a.e.). Thus, we have

IE
s (µε) = ε

∫
Rd

Ws ∗ µ dµε + (1 − ε)
∫

Rd
Ws ∗ µ̄ dµε ≥ εC + (1 − ε)C̄

= ε
∫

Rd
Ws ∗ µ dµ + (1 − ε)

∫
Rd

Ws ∗ µ̄ dµ̄ = εIs(µ) + (1 − ε)Is(µ̄).

Since IE
s (µε) = Is(µε) and Is is strictly convex (see the proof of uniqueness), we

conclude that µ = µ̄, showing that the only measure satisfying the Euler–Lagrange
equations is the minimizer.

7.3 Characterization of the minimizer in the super-
Coulombic case

In this section we prove Theorem 7.1.1. A general ellipsoid in Rd centred at the
origin can be described as E := RDB1, where R ∈ SO(d), D is a positive-definite
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d × d diagonal matrix, and B1 is the closed unit ball centred at the origin. Given an
ellipsoid E := RDB1, we define the linear map TE(x) := RDx for x ∈ Rd.

For any q ≥ d − 2, we define

µq :=

cq,d(1 − |x|2)
q−d

2 Ld(x) B1 if q > d − 2,

cq,dHd−1 ∂B1 if q = d − 2,
(7.14)

where cq,d is a normalization constant so that µq is a probability measure. For
completeness, we compute it in the next Lemma.

Lemma 7.3.1. We have

cq,d =


|B1|−1 Γ(1 + q

2 )

Γ(1 + d
2 )Γ(1 +

q−d
2 )

= π− d
2

Γ(1 + q
2 )

Γ(1 + q−d
2 )

if q > d − 2,

(
Hd−1(∂B1)

)−1
= π− d

2
Γ( d

2 )

2
if q = d − 2.

Proof. For q = d − 2, there is nothing to prove, so we focus on the case q > d − 2.
By Formula 6.1.5 with µ = d, ν = (q − d + 2)/2, and λ = 2, we have∫

B1

(1 − |x|2)
q−d

2 dx =
∫

∂B1

∫ 1

0
ρd−1(1 − ρ2)

q−d
2 dρ dω

=
1
2
Hd−1(∂B1)B

(
d
2

,
q − d + 2

2

)
= π

d
2

Γ(1 + q−d
2 )

Γ(1 + q
2 )

,

where we have used that Hd−1(∂B1) = 2π
d
2 /Γ(d/2).

For s = q ∈ [d− 2, d)∩ (0, d), µq clearly coincides with µiso,s. The push-forward
µE

q of µq by the map TE is given by

µE
q =


|E|−1 Γ(1 + q

2 )

Γ(1 + d
2 )Γ(1 +

q−d
2 )

(1 − |D−1RTx|2)
q−d

2 Ld(x) E if q > d − 2,

(
Hd−1(∂B1)det D

)−1|D−2RTx|−1Hd−1(x) ∂E if q = d − 2.

Before moving to the proof of our main result, it might be worth pointing out
that asking Ŵs to be continous on Rd \ {0} is not restrictive, and can be obtained,
for example, by asking enough regularity of the anisotropic profile Φ.

Proposition 7.3.2. Let d ≥ 2, s ∈ (0, d), and let Ws be as in (7.1) with Φ ∈ Wα,2(Sd−1)
an even, and strictly positive function. Then, if α > d − s − 1/2, Φ is continuous on
Sd−1 and Ŵs is continuous on Rd \ {0}.

Proof. Note that by the embedding proved in Theorem 6.3.3, Φ is continuous on
Sd−1. To compute the Fourier’s transform of Ws, it is convenient to write the profile
Φ ∈ L2(Sd−1) in terms of spherical harmonics. Let{

Yi
n : n ∈ N, i = 1, . . . , N(n, d)

}
⊂ L2(Sd−1)
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be an orthonormal basis of L2(Sd−1) whose elements are spherical harmonics.
Here, N(n, d) is defined as in Lemma 6.3.2. Recall that Yi

n is the restriction to Sd−1

of an harmonic homogenous polynomial of degree n, that, with a small abuse of
notation, we still denote by Yi

n. We can write

Φ =
∞

∑
n=0

N(n,d)

∑
i=1

λi
nYi

n, λi
n ∈ R.

Then for x ∈ Rd

Ws(x) =
∞

∑
n=0

N(n,d)

∑
i=1

λi
n

|x|s Yi
n

(
x
|x|

)
=

∞

∑
n=0

N(n,d)

∑
i=1

λi
n

|x|s+n Yi
n(x).

By Lemma 6.2.8 we infer that for ξ ∈ Rd

Ŵs(ξ) =
1

|ξ|d−s

∞

∑
n=0

N(n,d)

∑
i=1

λi
n(−1)n2d−sπ

d
2

Γ( n+d−s
2 )

Γ( n+s
2 )

Yi
n

(
ξ

|ξ|

)
,

provided the series at the right-hand side converges in L2(Sd−1). We show that

∞

∑
n=0

N(n,d)

∑
i=1

(λi
n)

2 Γ2( n+d−s
2 )

Γ2( n+s
2 )

< ∞,

that gives the convergence in L2(Sd−1). By the asymptotic behaviour of the Gamma
function (iv) in Section 6.1, we have

Γ2( n+d−s
2 )

Γ2( n+s
2 )

∼ nd−2s, (7.15)

Since α > d − s − 1/2, by the definition of Wα,2(Sd−1) we have the desired conver-
gence. Let

Ψ :=
∞

∑
n=0

N(n,d)

∑
i=1

λi
n(−1)n2d−sπ

d
2

Γ( n+d−s
2 )

Γ( n+s
2 )

Yi
n

(
ξ

|ξ|

)
∈ L2(Sd−1).

To conclude we show that Ψ ∈ Wβ,2(Sd−1), for some β > (d − 1)/2. The con-
tinuity of Ŵs then follows from Theorem 6.3.3. By definition of Wβ,2(Sd−1) (see
Section 6.3), we need to prove that

∞

∑
n=0

N(n,d)

∑
i=1

(λi
n)

2(n(n + d − 2))β Γ2( n+d−s
2 )

Γ2( n+s
2 )

< ∞.

By (7.15) we have

(n(n + d − 2))β Γ2( n+d−s
2 )

Γ2( n+s
2 )

∼ nd−2s+2β.

Since α > d − s − 1/2, we conclude.
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We move to the proof of the Fourier’s transform of µq and µE
q . Note that

µq and µE
q are Radon measures with compact support, hence they are tempered

distributions.

Lemma 7.3.3. Let q ≥ d − 2, and let µq ∈ P(Rd) be defined as in (7.14). Then

µ̂q(ξ) = ĉq
1

|ξ|
q
2

J q
2
(|ξ|),

where
ĉq := 2

q
2 Γ
(

1 +
q
2

)
.

Moreover, if E is an ellipsoid of the form E = RDB1 with R ∈ SO(d) and D a positive-
definite d × d diagonal matrix, then

µ̂E
q (ξ) = µ̂q(DRTξ). (7.16)

Proof. We start with the case q > d − 2. Applying Formula 6.2.5 for the Fourier’s
transform of a radial function we get

µ̂q(ξ) = cq,d
(2π)

d
2

|ξ| d
2 −1

∫ 1

0
(1 − r2)

q−d
2 J d

2 −1(r|ξ|)r
d
2 dr. (7.17)

To compute the integral in (7.17) we use Formula 6.1.3 with ν = d/2 − 1, ρ =
(q − d)/2, and b = |ξ|. We obtain

µ̂q(ξ) = cq,dπ
d
2 2

q
2 Γ
(

1 +
q − d

2

)
1

|ξ|
q
2

J q
2
(|ξ|) = 2

q
2 Γ
(

1 +
q
2

) 1

|ξ|
q
2

J q
2
(|ξ|),

which proves the first claim in the statement. Here, we have used the explicit
expression of cq,d given in Lemma 7.3.1. For a similar computation see also [Gra08,
Appendix B.5], where a slightly different definition of the Fourier’s transform is
used.

When q = d − 2, we use (6.15) to get

µ̂d−2(ξ) = 2
d
2 −1Γ

(
d
2

)
1

|ξ| d
2 −1

J d
2 −1(|ξ|).

Finally, (7.16) follows from the linearity and invertibility of the map TE.

The key ingredient for the proof of our main result, Theorem 7.1.1, is a formula
for the expression of the potential function Ws ∗ µE

q inside E when s ∈ (0, d) and
q ∈ [d − 2,+∞). As a first step, in the next technical lemma we study the regularity
of Ws ∗ µE

q .

Lemma 7.3.4. Suppose s ∈ (0, d) and q ∈ [d − 2,+∞). Let Ws be as in (7.1) with
Φ : Sd−1 → R a continuous, even, and strictly positive function. Let E := RDB1 be an
ellipsoid, and let µE

q be the push-forward of the measure µq by the map TE. Then

Ws ∗ µE
q ∈ L1

loc(R
d) ∩ C0(Rd \ ∂E).

Moreover, if 0 < s < min(d, (q + d)/2), then Ws ∗ µE
q ∈ C0(Rd).
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Proof. We only sketch the proof in the case E := B1 and Φ ≡ 1, and for convenience
we ignore the normalization constant cq,d. It is immediate to show that, for any
0 < s < d and q > d − 2, we have

Ws ∗ µq ∈ L1
loc(R

d) ∩ C0(Rd \ ∂B1).

The continuity in Rd \ ∂B1 also holds for q = d − 2. We focus on the behaviour
of the potential across ∂B1. To this aim we consider, with no loss of generality,
(Ws ∗ µq)(te1) for t close to 1. We use the compact notation

(Ws ∗ µq)(te1) =


vs(t, 1) if q = d − 2,∫ 1

0
vs(t, r)(1 − r2)

q−d
2 dr if q > d − 2,

(7.18)

where
vs(t, r) :=

∫
∂Br

1
|te1 − y|s dHd−1(y),

for t, r > 0 and t ̸= r. By setting y := rω and using spherical coordinates on ∂B1
we have

vs(t, r) = C(d)rd−1
∫ π

0

sind−2(φ)

(t2 + r2 − 2rt cos(φ))s/2 dφ

=
C(d)rd−1

hs

∫ π

0

sind−2(φ)

(1 + α2 − 2α cos(φ))s/2 dφ,

where h := max(t, r), α := min(t, r)/h ∈ (0, 1), and C(d) > 0 is a dimensional
constant. The integral above can be computed explicitly using Formula 6.1.2 with

µ =
(d − 1)

2
, ν =

s
2

, a = α,

and gives

vs(t, r) =
C(d)rd−1

hs B
(d − 1

2
,

1
2

)
2F1

( s
2

,
s − d + 2

2
;

d
2

; α2
)

. (7.19)

We now treat the cases 0 < s < d − 1 and d − 1 ≤ s < d separately.
Let 0 < s < d − 1. As recalled in Section 6.1, 2F1 is continuous with respect to

the last variable in the interval [0, 1] whenever

d
2
− s

2
− s − d + 2

2
> 0,

namely for 0 < s < d − 1. Hence, by (7.19), vs is continuous in t. For q = d − 2,
this immediately provides the continuity of the potential in the whole Rd. For
q > d − 2 the continuity follows by (7.18), (7.19), and the Dominated Convergence
Theorem. Note that for 0 < s < d − 1 and q ≥ d − 2, we have

min
(

d,
q + d

2

)
≥ d − 1 > s.
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Let now d − 1 < s < d. In this range of Riesz exponents, by (6.3),

2F1

( s
2

,
s − d + 2

2
;

d
2

; α2
)
∼ (1 − α2)d−s−1 for α ∼ 1. (7.20)

If q = d− 2, the asymptotics in (7.20), with (7.18)–(7.19)and the fact that d− s− 1 >
−1, implies that Ws ∗ µq is integrable in a neighbourhood of ∂B1, hence it is locally
integrable in Rd. The same asymptotics shows that the potential blows up on ∂B1,
thus it is not continuous on Rd. Note that for d − 1 < s < d and q = d − 2, we have

min
(

d,
q + d

2

)
= d − 1 < s.

Let now q > d − 2. Let 0 < ε < 1/4, and assume that |t − 1| < ε. In what
follows we consider the integral∫ 1

1−2ε
vs(t, r)(1 − r2)

q−d
2 dr, (7.21)

which is crucial in proving the continuity of the potential. Since |t − 1| < ε,
1 − 2ε < r < 1, and t ̸= r, we have

1 − 2ε

1 + ε
≤ α < 1.

Hence, for ε small enough, we can replace, up to constants, the hypergeometric
function in (7.19) with its asymptotics given by (7.20). Namely, we can estimate
(7.21) as follows:∫ 1

1−2ε
vs(t, r)(1 − r2)

q−d
2 dr ∼

∫ 1

1−2ε

rd−1

hs (1 − α2)d−s−1(1 − r2)
q−d

2 dr =: I.

We distinguish two cases, depending on whether t is smaller or greater than 1.
Let t < 1. We split I into I = I1 + I2, where

I1 :=
∫ t

1−2ε

rd−1

hs (1 − α2)d−s−1(1 − r2)
q−d

2 dr

=
∫ t

1−2ε

rd−1

t2d−s−2 (t
2 − r2)d−s−1(1 − r2)

q−d
2 dr,

I2 :=
∫ 1

t

rd−1

hs (1 − α2)d−s−1(1 − r2)
q−d

2 dr

=
∫ 1

t
rs+1−d(r2 − t2)d−s−1(1 − r2)

q−d
2 dr.

To estimate I2 it is convenient to further split I2 = I3 + I4, where

I3 :=
∫ 1+t

2

t
rs+1−d(r2 − t2)d−s−1(1 − r2)

q−d
2 dr,

I4 :=
∫ 1

1+t
2

rs+1−d(r2 − t2)d−s−1(1 − r2)
q−d

2 dr.
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For q < d we have

|I3| ≤ (2t)d−s−1(1 + t)
q−d

2

(
1 − 1 + t

2

) q−d
2 ∫ 1+t

2

t
(r − t)d−s−1 dr

≤ C1

(
1 − 1 + t

2

) q−d
2
(

1 + t
2

− t
)d−s

= C1

(
1 − t

2

) q+d
2 −s

= C2 (1 − t)
q+d

2 −s ,

where C1, C2 > 0, and we used that t ≤ r ≤ (1 + t)/2 and s + 1 − d > 0. An
analogous reasoning leads to the same estimate for q ≥ d. Similarly, since q > d− 2,

|I4| ≤ C3(1 − t)d−s−1
∫ 1

1+t
2

(1 − r)
q−d

2 dr = C3(1 − t)d−s−1
(

1 − 1 + t
2

) q−d+2
2

= C4(1 − t)
q+d

2 −s,

where C3, C4 > 0, and we used that r − t ≥ (1 − t)/2. As for the term I1, setting
τ := t − r, we obtain

I1 =
∫ t−1+2ε

0

(t − τ)d−1

t2d−s−2 τd−s−1(2t − τ)d−s−1(1 − (t − τ)2)
q−d

2 dτ

≤ C5

∫ t−1+2ε

0
τd−s−1(1 − t + τ)

q−d
2 dτ ≤ C6

∫ t−1+2ε

0
f (t, τ) dτ,

where C5, C6 > 0, and

f (t, τ) :=

{
τd−s−1 if q−d

2 ≥ 0,

τ
q+d

2 −s−1 if − 1 < q−d
2 < 0.

Hence, we deduce the estimate

|I1| ≤ C7

{
(t − 1 + 2ε)d−s if q−d

2 ≥ 0,

(t − 1 + 2ε)
q+d

2 −s if − 1 < q−d
2 < 0

for some C7 > 0. In both cases, if 0 < s < min(d, (q + d)/2), we can find a positive
β such that

|I1| ≤ C7(t − 1 + 2ε)β ≤ C7(2ε)β.

For t > 1, instead, we write

I =
∫ 1

1−2ε

rd−1

t2d−s−2 (t
2 − r2)d−s−1(1 − r2)

q−d
2 dr,

and, assuming (q + d)/2 − s > 0, we obtain

|I| ≤ C8

∫ 1

1−2ε
(1 − r)

q+d
2 −s−1 dr = C8(2ε)

q+d
2 −s,

where C8 > 0. We conclude that, if d − 1 < s < min(d, (q + d)/2), with q > d − 2,
there exist positive constants ε0 ≤ 1/4, C9, and β such that for any 0 < ε ≤ ε0 and
any |1 − t| < ε, we have

0 ≤
∫ 1

1−2ε
vs(t, r)(1 − r2)

q−d
2 dr ≤ C9

(
|1 − t|

q+d
2 −s + εβ

)
.
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Using this estimate it is easy to show that, under these assumptions, the potential
is continuous also on ∂B1.

The case s = d − 1 follows analogously, by using (6.2) instead of (6.3) in the
estimate of 2F1 for α ∼ 1.

Remark 7.3.5. From Lemma 7.3.4, we infer that Ws ∗ µE
q ∈ C0(Rd) in particular

when q = s ∈ [d − 2, d) ∩ (0, d), and when q = s + 2, with s ∈ [d − 4, d) ∩ (0, d).
Such a continuity result will be relevant to extend up to the boundary of E the
formulas (7.24) and (7.25) of the following Theorem 7.3.6.

We are now in a position to prove the Fourier representation of the potential
Ws ∗ µE

q inside E.

Theorem 7.3.6. Let s ∈ (0, d) and q ∈ [d − 2,+∞). Let Ws be as in (7.1) with
Φ : Sd−1 → R a continuous, even, and strictly positive function. Suppose that Ŵs is
continuous on Rd \ {0}. Let E := RDB1 be an ellipsoid, and let µE

q be the push-forward
of the measure µq by the map TE. Then,

(Ws ∗ µE
q )(x) = c̃d,s,q

∫
Sd−1

Ψ(ω)

|DRTω|s 2F1

( s − q
2

,
s
2

;
1
2

; α2(x, ω)
)

dHd−1(ω) (7.22)

for every x in the interior of E, where Ψ := Ŵs|Sd−1 ,

c̃d,s,q :=
2s−d−1Γ(1 + q

2 )Γ(
s
2 )

πdΓ(1 + q−s
2 )

, (7.23)

and
α(x, ω) :=

x · ω

|DRTω| .

In particular, for q = s the potential function Ws ∗ µE
s is constant in E and is given by

(Ws ∗ µE
s )(x) =

2s−d−2

πd sΓ2
( s

2

) ∫
Sd−1

Ψ(ω)

|DRTω|s dHd−1(ω) (7.24)

for every x ∈ E. Finally, for s ∈ [d − 4, d) ∩ (0, d) and q = s + 2, the potential function
Ws ∗ µE

s+2 is, up to an additive constant, a quadratic function in E given by

(Ws ∗ µE
s+2)(x) = c̃d,s,s+2

∫
Sd−1

Ψ(ω)

|DRTω|s dHd−1(ω)

− s c̃d,s,s+2

∫
Sd−1

Ψ(ω)

|DRTω|s+2 (x · ω)2 dHd−1(ω)

(7.25)

for every x ∈ E.

Remark 7.3.7. Theorem 7.3.6 provides an alternative way to derive [Fra+25, Equa-
tion (2.31)] and in fact extends it to the entire range of s ∈ (max{d − 4, 0}, d) in
any space dimension d.
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Proof of Theorem 7.3.6. Formula (7.22) is a consequence of the Fourier Inversion
Theorem. However, we cannot apply the inversion formula directly to Ws ∗ µE

q ,
since its Fourier’s transform fails to be integrable at infinity for 2s − q ≥ 1. Indeed,
by Lemmas 6.2.6, 6.2.7 and 7.3.3, and due to the asymptotic behaviour (6.8) of the
tail of the Bessel function at infinity, we have that

Ŵs ∗ µE
q = O(|ξ|s−d− q

2−
1
2 ), |ξ| → ∞.

We thus proceed by approximation. For r > 0 let Br be the ball of radius r centred
at the origin and let χBr denote its characteristic function. We set χr := |Br|−1χBr

and define Pr := χr ∗ (Ws ∗ µE
q ).

By Lemma 7.3.4, Pr belongs to L1
loc(R

d) and Pr converges pointwise in Rd \ ∂E
(thus almost everywhere in Rd) to Ws ∗ µE

q , as r → 0+. If

0 < s < min
(

d,
q + d

2

)
,

the function Pr is continuous on Rd, and Pr converges pointwise in Rd to Ws ∗ µE
q ,

as r → 0+.
Note that, by the controlled growth behaviour at infinity, Ws is a tempered

distribution. In particular, since µq has compact support, Ws ∗ µE
q is still a tempered

distribution (see Section 6.2 for details). Lastly, since χr has compact support, Pr is
a tempered distribution and P̂r = χ̂r Ŵs µ̂E

q . To compute χ̂r we apply Formula 6.2.5
and obtain

χ̂r(ξ) =
(2π)

d
2

|Br||ξ|
d
2 −1

∫ r

0
ρ

d
2 J d

2 −1(ρ|ξ|) dρ =
2

d
2 Γ(1 + d

2 )

r
d
2

1

|ξ| d
2

J d
2
(r|ξ|), (7.26)

where we used that |Br| = rdπ
d
2 /Γ

(
1 + d

2
)
.

By the homogeneity of Ŵs given by Lemmas 6.2.6, 6.2.7 and 7.3.3, and the
asymptotic behaviour of Bessel functions in (6.7)–(6.8), we deduce that

P̂r(ξ) = O(|ξ|s−d), |ξ| → 0+,

P̂r(ξ) = O(|ξ|s−
q
2−

3
2 d−1), |ξ| → +∞.

Since 2s − q < d + 2 in our setting, this implies that P̂r ∈ L1(Rd). Thus, we can
apply the Fourier Inversion Theorem 6.2.1 (see also Remark 6.2.2). By Lemma 7.3.3,
(7.16), and (7.26) we obtain

Pr(x) =
c̃q,d

r
d
2

∫
Rd

1

|ξ| 3
2 d−s|DRTξ|

q
2

J d
2
(r|ξ|)J q

2
(|DRTξ|)Ψ

( ξ

|ξ|

)
cos(x · ξ) dξ, (7.27)

where

c̃q,d :=
2

q−d
2

πd Γ
(

1 +
q
2

)
Γ
(

1 +
d
2

)
.

In (7.27) the imaginary part can be dropped because χ̂r Ŵs µ̂E
q is even. Writing

(7.27) in polar coordinates yields that Pr(x) is equal to

c̃q,d

r
d
2

∫
Sd−1

Ψ(ω)

|DRTω|
q
2

∫ ∞

0
ρs− q

2−
d
2 −1 J d

2
(rρ)J q

2
(ρ|DRTω|) cos(ρω · x) dρ dHd−1(ω).



166 CHAPTER 7. NONLOCAL ANISOTROPIC ENERGIES

Set

t := |DRTω|ρ, β(r, ω) :=
r

|DRTω| , and α(x, ω) :=
x · ω

|DRTω| . (7.28)

Changing variables in the integral with respect to ρ we obtain

Pr(x) =
c̃q,d

r
d
2

∫
Sd−1

Ψ(ω)

|DRTω|s− d
2

Ir(x, ω) dHd−1(ω), (7.29)

where

Ir(x, ω) :=
∫ ∞

0
ts− q

2−
d
2 −1 J d

2
(tβ(r, ω))J q

2
(t) cos(tα(x, ω)) dt.

To compute Ir we recall identity (6.9), that gives

cos(tα(x, ω)) = cos(t|α(x, ω)|) =
√

π

2
t

1
2 |α(x, ω)|

1
2 J− 1

2
(t|α(x, ω)|),

where the last expression on the right-hand side is extended at tα(x, ω) = 0 by
continuity given the asymptotic (6.7). Thus, we can rewrite Ir as

Ir(x, ω) =

√
π

2
|α(x, ω)|

1
2

×
∫ ∞

0
ts− q

2−
d
2 −

1
2 J d

2
(tβ(r, ω))J q

2
(t)J− 1

2
(t|α(x, ω)|) dt.

(7.30)

For the integral in (7.30) we use Formula 6.1.4. For a fixed x in the interior of E,
r > 0 and ω ∈ Sd−1 we apply the Formula 6.1.4 with

λ = s − q − d + 1
2

, ν = −1
2

, µ =
d
2

,

ρ =
q
2

, a = |α(x, ω)|, b = β(r, ω), c = 1.

Hence, conditions (6.10) translates into

s > 0, 2s − q < d + 4, and |α(x, ω)| < 1 − β(r, ω).

The first two conditions are trivially satisfied for s and q in the range under
consideration. As for the last one, we observe that x = pRDη for some η ∈ Sd−1

and 0 ≤ p < 1, and thus

|α(x, ω)| = |x · ω|
|DRTω| =

p|η · DRTω|
|DRTω| ≤ p < 1

for every ω ∈ Sd−1. Since β(r, ω) → 0 as r → 0+, uniformly with respect to
ω ∈ Sd−1, there exist δ ∈ (0, 1) and r0 > 0 such that for r < r0 we have

|α(x, ω)|+ β(r, ω) ≤ δ ∀ω ∈ Sd−1.
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For x in the interior of E, r < r0 and ω ∈ Sd−1 we can then evaluate the integral in
(7.30), and deduce that

Ir(x, ω) =

√
π

2
|α(x, ω)|

1
2

2s− q
2−

d
2 −

1
2 β

d
2 (r, ω)|α(x, ω)|− 1

2 Γ
( s

2
)

Γ
( d

2 + 1
)
Γ
( 1

2
)
Γ
(
1 + q−s

2
)

× F4

( s − q
2

,
s
2

;
d
2
+ 1,

1
2

; β2(r, ω), α2(x, ω)
)

=
2s− q

2−
d
2 −1β

d
2 (r, ω)Γ( s

2 )

Γ( d
2 + 1)Γ(1 + q−s

2 )
F4

( s − q
2

,
s
2

;
d
2
+ 1,

1
2

; β2(r, ω), α2(x, ω)
)

,

where we have used property (iii) of the Gamma function in Section 6.1. By (7.29)
and the definition of β in (7.28) we conclude that, for x in the interior of E and
r < r0, Pr(x) is given by

c̃d,s,q

∫
Sd−1

Ψ(ω)

|DRTω|s F4

( s − q
2

,
s
2

;
d
2
+ 1,

1
2

; β2(r, ω), α2(x, ω)
)

dHd−1(ω), (7.31)

where c̃d,s,q is the constant in (7.23).
We now pass to the limit as r → 0+. By (6.6) and by the definition of β we have

lim
r→0

F4

( s − q
2

,
s
2

;
d
2
+ 1,

1
2

; β2(r, ω), α2(x, ω)
)
= 2F1

( s − q
2

,
s
2

;
1
2

; α2(x, ω)
)

. (7.32)

Moreover, since F4 is analytic in its domain of definition and

|α(x, ω)|+ β(r, ω) ≤ δ < 1 for r < r0,

the convergence (7.32) is uniform with respect to ω ∈ Sd−1. Hence, passing to the
limit in (7.31) and recalling that Pr converges to Ws ∗ µE

q pointwise in the interior
of E, as r → 0+, we obtain (7.22) for every x in the interior of E.

The statement (7.24) for q = s follows immediately in the interior of E from
(7.22), owing to (6.4) and property (i) of the Gamma function in Section 6.1. Simil-
arly, the statement (7.25) for q = s + 2 follows immediately in the interior of E from
(7.22), owing to (6.5). In fact both formulas hold up to the boundary of E since in
both cases the potential Ws ∗ µE

q is continuous, as observed in Remark 7.3.5.

We conclude this section by proving Theorem 7.1.1.

Proof of Theorem 7.1.1. By Theorem 7.2.1 the minimizer of IE
s exists, is unique, and is

the unique measure satisfying the Euler–Lagrange conditions (EL1)–(EL3). There-
fore, to conclude it is enough to show that µE

s satisfies (EL1)–(EL3). Condition
(EL1) is trivially satisfied. Conditions (EL2)–(EL3) follow from Theorem 7.3.6 with
q = s.

7.4 The sub-Coulombic regime

We recall that in Section Section 7.3 we have shown that, for s ≥ d − 2, the
minimizer µE

s of IE
s is insensitive to the anisotropy Φ, and in particular if E := B1

we have µB1
s = µiso,s.
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In this section we show that the equality above may fail for s < d − 2 by
providing an explicit example of a kernel Ws of the form (7.1) with continuous and

non-negative Fourier’s transform, for which µiso,d−2 is not the minimizer of IB1
s .

Lemma 7.4.1. Let d ≥ 3 and s ∈ (0, d − 2). Let Ws be as in (7.1) with Φ : Sd−1 → R

given by

Φ(ω) :=
d

∑
i=1

αiω
2
i for ω ∈ Sd−1,

with αi > 0 for i = 1, . . . , d. Then Ŵs is non-negative on Sd−1 if and only if

αi ≤
1

d − s − 1 ∑
j ̸=i

αj for every i = 1, . . . , d. (7.33)

Proof. Let p0 and p2,i, for i = 1, . . . , d, be the homogeneous harmonic polynomials
defined as

p0 ≡ 1, p2,i(x) := (d − 1)x2
i − ∑

j ̸=i
x2

j ,

for x ∈ Rd. Then for ω ∈ Sd−1 we write Φ as

Φ(ω) =
1
d

d

∑
i=1

αi p0(ω) +
1
d

d

∑
i=1

αi p2,i(ω),

and hence, for x ∈ Rd, x ̸= 0, the kernel Ws can be rewritten as

Ws(x) =
1
d

d

∑
i=1

αi
p0(x)
|x|s +

1
d

d

∑
i=1

αi
p2,i(x)
|x|s+2 .

From Lemma 6.2.8 we deduce that for ξ ∈ Rd, ξ ̸= 0,

Ŵs(ξ) =
1
d

2d−sπ
d
2

Γ( d−s
2 )

Γ( s
2 )

1
|ξ|d−s

d

∑
i=1

αi −
1
d

d

∑
i=1

αi2d−sπ
d
2

Γ(1 + d−s
2 )

Γ(1 + s
2 )

p2,i(ξ)

|ξ|2+d−s

=
1
d

2d−sπ
d
2

Γ( d−s
2 )

Γ( s
2 )

1
|ξ|d−s

d

∑
i=1

(
αi − αi

d − s
s

p2,i

(
ξ

|ξ|

))
,

(7.34)
where we have used property (i) of the Gamma function in Section 6.1. In particular,
for ω ∈ Sd−1 we have

1
d

d

∑
i=1

(
αi − αi

d − s
s

p2,i(ω)

)
=

1
d

d

∑
i=1

(
αi − αi

d − s
s

(dω2
i − 1)

)

=
1
s

d

∑
i=1

αi

d

∑
j=1

ω2
j −

1
s

d

∑
i=1

αi(d − s)ω2
i

=
1
s

d

∑
i=1

(
(1 − d + s)αi + ∑

j ̸=i
αj

)
ω2

i .
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Thus, (7.34) can be rewritten as

Ŵs(ξ) =
1

|ξ|d−s 2d−sπ
d
2

Γ( d−s
2 )

Γ( s
2 )

1
s

d

∑
i=1

(
(1 − d + s)αi + ∑

j ̸=i
αj

)
ξ2

i
|ξ|2 .

Since 1 − d + s < 0 for s < d − 2, we conclude that Ŵs ≥ 0 if and only if (7.33) is
satisfied.

We are now in a position to prove the main result of this section.

Theorem 7.4.2. Let d ≥ 3 and s ∈ (0, d − 2). Let Ws be as in (7.1) with Φ : Sd−1 → R

given by

Φ(x) :=
d − 1

d − s − 1
x2

1 +
d

∑
i=2

x2
i = 1 +

s
d − s − 1

x2
1 for x ∈ Sd−1.

Then Φ is continuous, even, and strictly positive, and Ŵs is continuous and non-negative

on Sd−1. However, the measure µiso,d−2 is not the minimizer of the energy IB1
s with

kernel Ws.

Proof. All the properties of Φ and Ws are straightforward, except for the sign of
Ŵs. By Lemma 7.4.1 the non-negativity of Ŵs on Sd−1 is equivalent to

1 ≤ 1
d − s − 1

(
d − 2 +

d − 1
d − s − 1

)
. (7.35)

A simple computation shows that (7.35) reduces to s2 − sd ≤ 0, which is true for
0 < s < d − 2.

To prove that the measure µiso,d−2 is not the minimizer of IB1
s , it is enough to

show that
A := (Ws ∗ µiso,d−2)(e2)− (Ws ∗ µiso,d−2)(e1) ̸= 0. (7.36)

Indeed, since Ws ∗ µiso,d−2 ∈ C0(Rd) by Lemma 7.3.4, equation (7.36) implies that
Ws ∗ µiso,d−2 is not constant Hd−1-a.e. on ∂B1, contradicting (EL2).

We note that

(Ws ∗ µiso,d−2)(e1) = cd−2,d

∫
Sd−1

1
|e1 − ω|s

(
1 +

s
d − s − 1

(1 − ω1)
2

|e1 − ω|2

)
dHd−1(ω)

and by the change of variables ω̃ := (ω2, ω1, ω3, . . . , ωd) we can rewrite

(Ws ∗ µiso,d−2)(e2) = cd−2,d

∫
Sd−1

1
|e2 − ω|s

(
1 +

s
d − s − 1

ω2
1

|e2 − ω|2

)
dHd−1(ω)

= cd−2,d

∫
Sd−1

1
|e1 − ω̃|s

(
1 +

s
d − s − 1

ω̃2
2

|e1 − ω̃|2

)
dHd−1(ω̃).

Therefore,

A = cd−2,d
s

d − s − 1

∫
Sd−1

ω2
2 − (1 − ω1)

2

|e1 − ω|s+2 dHd−1(ω).
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Since |e1 − ω|2 = 2 − 2ω1 for ω ∈ Sd−1, we have

|e1 − ω|s+2 = 2
s+2

2 (1 − ω1)
s+2

2 for ω ∈ Sd−1.

Hence, the claim (7.36) reduces to showing that

∫
Sd−1

ω2
2 − (1 − ω1)

2

(1 − ω1)
s+2

2
dHd−1(ω) ̸= 0. (7.37)

We consider separately the two cases d ≥ 4 and d = 3. We start with the case
d ≥ 4. Passing to spherical coordinates, the integral in (7.37) can be rewritten as
C(d)(I1 − I2), where C(d) > 0 is a dimensional constant, and

I1 :=
∫ π

0

∫ π

0

sind(φ1) cos2(φ2) sind−3(φ2)

(1 − cos(φ1))
s+2

2
dφ1dφ2,

I2 :=
∫ π

0

∫ π

0
(1 − cos(φ1))

2−s
2 sind−2(φ1) sind−3(φ2) dφ1dφ2.

To conclude we need to show that I1 − I2 ̸= 0. We write I1 = I3 I4, where

I3 :=
∫ π

0
sind(φ1)(1 − cos(φ1))

−2−s
2 dφ1,

I4 :=
∫ π

0
cos2(φ2) sind−3(φ2) dφ2.

By the sine and the cosine duplication formula and by Formula 6.1.1 we obtain

I3 = 2d− s+2
2

∫ π

0
sind−2−s

( φ1

2

)
cosd

( φ1

2

)
dφ1

= 2d+1− s+2
2

∫ π
2

0
sind−2−s(φ1) cosd(φ1) dφ1

= 2d−1− s
2 B
(d − s − 1

2
,

d + 1
2

)
,

(7.38)

whereas

I4 = 2
∫ π

2

0
cos2(φ2) sind−3(φ2) dφ2 = B

(d − 2
2

,
3
2

)
. (7.39)

Similarly, we write I2 = I5 I6, where

I5 :=
∫ π

0
(1 − cos(φ1))

2−s
2 sind−2(φ1) dφ1

= 2d− s
2

∫ π
2

0
sind−s(φ1) cosd−2(φ1) dφ1 = 2d−1− s

2 B
(d − s + 1

2
,

d − 1
2

) (7.40)

and

I6 :=
∫ π

0
sind−3(φ2) dφ2 = 2d−2

∫ π
2

0
sind−3(φ2) cosd−3(φ2) dφ2

= 2d−3B
(d − 2

2
,

d − 2
2

)
.

(7.41)
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Combining (7.38)–(7.41) yields

I1 − I2 = I3 I4 − I5 I6 = 2d−1− s
2 B
(

d − s − 1
2

,
d + 1

2

)
B
(

d − 2
2

,
3
2

)
− 22d−4− s

2 B
(d − s + 1

2
,

d − 1
2

)
B
(d − 2

2
,

d − 2
2

)
.

By the definition of Beta function, the previous equality can be rewritten as

2d−1− s
2

Γ( d
2 − 1)

Γ(d − s
2 )

(
Γ
(d − s − 1

2

)
Γ
(3

2

)
− 2d−3 Γ( d−s+1

2 )Γ( d−1
2 )Γ( d

2 − 1)
Γ(d − 2)

)
.

By properties (i) and (iii) of the Gamma function we have that

Γ
(d − s + 1

2

)
=
(d − s − 1

2

)
Γ
(d − s − 1

2

)
and

Γ
(3

2

)
=

1
2

Γ
(1

2

)
=

√
π

2.
Therefore, I1 − I2 = 0 if and only if

√
π

2
Γ(d − 2)− 2d−4(d − s − 1) Γ

(d − 1
2

)
Γ
(d

2
− 1
)
= 0. (7.42)

Finally, properties (ii) of the Gamma function gives

Γ
(d − 1

2

)
Γ
(d

2
− 1
)
= 23−d√πΓ(d − 2),

hence (7.42) reduces to
√

π

2
Γ(d − 2)(2 − d + s) = 0,

which is never satisfied for s < d − 2. This concludes the proof for d ≥ 4. When
d = 3, the previous computations can be repeated with the only difference being
that the integration interval for φ2 is (0, 2π), instead of (0, π). This change simply
introduces an extra factor of 2 in the expressions for both I4 and I6, so the same
calculations still lead to the desired conclusion.

A simple continuity argument leads to the following.

Corollary 7.4.3. Let d ≥ 3 and s ∈ (0, d − 2). For any ε > 0, we set

Φε(ω) :=
d − 1 − ε

d − s − 1
ω2

1 +
d

∑
i=2

ω2
i for ω ∈ Sd−1

and for x ∈ Rd, x ̸= 0,

Ws,ε(x) :=
1
|x|s Φε

(
x
|x|

)
.

Then there exists ε0 > 0, depending on s, such that for any 0 < ε ≤ ε0 the profile Φε is
continuous, even, and strictly positive, Ŵs,ε is continuous and strictly positive on Sd−1,

but the measure µiso,d−2 is not the minimizer of the energy IB1
s with kernel Ws replaced

by Ws,ε.





8
Optimal constructions

of grain boundaries

8.1 Assumptions and main results

In this chapter we consider the two-dimensional semi-discrete dislocation energy
introduced by Lauteri and Luckhaus in [LL16] (and later studied in [FGS25])
and propose an alternative, simpler, and more natural construction for the grain
boundary between two crystal grains with small orientation difference, which
works for a general Bravais’ lattice.

Let L > 0, and let Ω := [−L, L]× [−2L, 0] represent the two-dimensional cross-
section of a three-dimensional crystal. Let ε > 0 be a small parameter representing
the microscopic scale (e.g. the size of the lattice cell), and let τ, λ > 0 be two para-
meters representing the (rescaled) length of the Burgers’ vector and the (rescaled)
size of the core-region around a dislocation, respectively. Consider B̃ a Bravais’
lattice in R2, and b̃1, b̃2 ∈ R2 a basis of the lattice, so that B̃ = spanZ2{b̃1, b̃2}, and
spanR2{b̃1, b̃2} = R2. Let ϕ ∈ [0, 2π] denote the lattice orientation, so that the
rotated lattice is B := RϕB̃, where Rϕ ∈ SO(2) is the rotation

Rϕ :=
(

cos ϕ − sin ϕ
sin ϕ cos ϕ

)
.

Clearly B is the lattice generated by b1 := Rϕ b̃1 and b2 := Rϕ b̃2, which we write
for simplicity as

b1 :=
(

cos η
sin η

)
, b2 :=

(
cos θ
sin θ

)
.

We assume that sin η ̸= 0, that is b1 ̸= e1. For b1 = e1 one can construct the grain
boundary in a simpler way (see Remark 8.3.2). Finally, we denote with α > 0
the small misorientation between two neighbouring grains occupying the regions
[−L, 0]× [−2L, 0] and [0, L]× [−2L, 0].

173



174 CHAPTER 8. OPTIMAL CONSTRUCTIONS OF GRAIN BOUNDARIES

We define the class of admissible strains Cε(Ω) as follows:

Cε(Ω) :=
{
(β, S) : β ∈ L1(Ω; R2×2) ∩ L2(Ω \ Bλε(S); R2×2),

S relatively closed, satisfying (H1)–(H3)
}

,

where

(H1) supp(curl β) ⊂ S,

(H2) ⟨Tγ
t (β), 1⟩ ∈ τεB for every simple, closed, and Lipschitz curve γ in Ω \

Bλε(S), where Tγ
t is the tangent trace on γ,

(H3) β satisfies the symmetric boundary conditions

β =

{
R−α in [−L,−L + ℓ]× [−2L, 0],
Rα in [L − ℓ, L]× [−2L, 0],

with 0 < ℓ ≪ L.

Here,
Bλε(S) = {x ∈ R2 : dist(x, S) < λε}.

Condition (H2) deserves some clarification. In particular, we should illustrate
why Tγ

t is well-defined. Since γ ⊂ Ω \ Bε(S), we have that dist(γ, Bε(S)) > 0.
Then, one can show that there exists an open set A ⊂ Ω \ Bε(S) such that ∂A =
γ ∪ γ̃, with γ̃ being a smooth curve disjoint from γ. By (H1), curl(β) = 0 in A, thus

β ∈ L2
curl(A; R2×2).

It follows that β admits a tangent trace in A (see Section 6.5). Since ∂A is made
of two disjoint connected component, one of them being γ, we can identify the
tangent trace of β on A with the sum of two elements, one of them being the
tangent trace on γ (see Section 6.5). One can also show that the trace on γ obtained
as above is independent of the choice of the set A, thus, Tγ

t (β) is well-defined.
Condition (H2) is a quantization property of the averaged macroscopic Burgers’

vector. Indeed, if in addition β ∈ C0(Ω; R2), (H2) can be rewritten as∫
γ

βt dH1 ∈ τεB,

and, if curl(β) ∈ L2(Ω; R2), then by Stokes’ Theorem (see Section 6.5)∫
Γ

curl(β) dx =
∫

γ
βt dH1 ∈ τεB,

where Γ is the set enclosed by γ and the left-hand side is the averaged macroscopic
Burgers’ vector.

The energy associated to an admissible pair (β, S) ∈ Cε(Ω) is

Eε(β, S) :=
1
ε

(∫
Ω\Bλε(S)

W(β) dx + L2(Bλε(S))
)

, (8.1)



8.2 THE GRAIN BOUNDARY CONSTRUCTION 175

with the first term being the elastic energy and the second term a core energy. We
assume the elastic energy to have at most quadratic growth, namely there is a
constant C > 0 such that

W(M) ≤ C dist2(M, SO(2)) ∀ M in a neighbourhood of SO(2). (8.2)

The energy is written in terms of the strain field β. However, outside S, β is locally
the gradient of a deformation.

One of the goals in [LL16] was to show that, for ε small enough,

inf {Eε(β, S) : (β, S) ∈ Cε(Ω)} ≤ Cα| log α|,

with C > 0, as claimed by Read and Shockley in [RS50].
This has been done in [LL16] for B = B̃ = Z2 (that is ϕ = 0), and later, in

[FGS25], generalized to the rotated lattice RϕZ2. Note that the case ϕ ̸= 0 is
equivalent to having an unrotated lattice Z2, and asymmetric boundary conditions
R±α−ϕ, as considered in [RS50].

In this chapter we deal with the case of asymmetric grain boundaries for a
general Bravais’ lattice B, and propose an alternative, simpler construction for
the grain boundary. In our construction the deformation is piecewise affine on a
finite polyhedral Cacciopoli’s partition, hence the strain β is piecewise constant,
and the boundaries of the regions of the partition are straight segments. Thus, our
construction is admissible for the more restrictive minimization problem

inf {Eε(β, S) : (β, S) ∈ Cε(Ω), β piecewise constant} , (8.3)

which can be recast purely in terms of matrices. Within this more restrictive
framework, a competitor for (8.3) is a piecewise constant map β which connects
the rotations R±α on the two outer vertical strips of the domain, in such a way that
the constant values of β are close to SO(2) and that the constant matrices in the
construction are almost always rank-one connected along their common, straight
interface. Recall that two matrices M1 and M2 are said to be rank-one connected
along a direction ν if M1 − M2 = w ⊗ ν for some vector w.

We now briefly describe our construction. As in [LL16] and [FGS25], the field β
agrees with the respective boundary conditions R±α in the majority of the domain,
except for a thin vertical strip of width of order ε/α. In the general case θ ̸= 0
this strip is composed of two vertical sub-strips next to each other, and only one
Burgers vector is active per sub-strip. In each sub-strip, dislocations are arranged
periodically, at a distance of order α/ε. The presence of a dislocation is incorporated
by means of a jump of the deformation, that simulates the opening of the lattice to
make space for the presence of the extra half plane of atoms carried by the defect.
We take into account the accumulation of the Burgers’ vector by making such
opening wider and wider as we travel down in the lattice.

8.2 The grain boundary construction

In this section we present our construction, illustrated in Figure 8.1.
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2L

∼ ε
α

∼ ε
α

R−α Rα

Figure 8.1: The vertical grain boundary.

8.2.1 The splitting of the domain

Let ℓ1, ℓ2 > 0 be positive parameters to be defined later on, representing the width
of the two vertical sub-strips Σ1 and Σ2 defined as

Σ1 := [−2ℓ1, 0]× [−2L, 0], Σ2 := [0, 2ℓ2]× [−2L, 0],

and let
Σ−α := [−L,−2ℓ1]× [−2L, 0], Σα := [−2ℓ2, L]× [−2L, 0]

be the strips where the boundary conditions R±α will be imposed. Then we split
the domain as

Ω = Σ−α ∪ Σ1 ∪ Σ2 ∪ Σα.

The vertical sub-strips Σi are further split into squares with side-length 2ℓi. More
precisely, we denote the generic square in the strip Σi as

Qk
i := Qi + tk

i , Qi := [−ℓi, ℓi]
2 , k = 0, 1, 2, . . . , Ni,

where
tk
i := −(2k + 1)ℓie2 + (−1)iℓie1 (8.4)

is a translation vector, and Ni := ⌈L/ℓi⌉ − 1. Finally, we denote with D0
i :=

[−r0,i, r0,i]
2, and with Dn

i the family of dyadic annuli

Dn
i := [−rn,i, rn,i]

2 \ [−rn−1,i, rn−1,i]
2, rn,i := 2nr0,i,
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for n = 1, . . . , n̄i, with n̄i, i = 1, 2, such that

rn̄i ,i = ℓi.

While li, and n̄i are parameters to be fixed, r0,i is determined once they are chosen.
By construction, we have

Qi = [−rn̄i ,i, rn̄i ,i]
2 =

n̄i⋃
n=0

Dn
i , i = 1, 2.

For later convenience, we define the following subsets of Dn
i :

∆a,n
1 := conv({(rn−1,1,−rn−1,1), (rn,1, rn,1), (rn−1,1, rn−1,1)}),

∆b,n
1 := conv({(rn,1, rn,1), (rn,1,−rn,1), (rn−1,1,−rn−1,1)}),

∆a,n
2 := conv({(−rn−1,2,−rn−1,2), (−rn,2, rn,2), (−rn−1,2, rn−1,2)}),

∆b,n
2 := conv({(−rn,2, rn,2), (−rn,2,−rn,2), (−rn−1,2,−rn−1,2)}),

where conv denotes the convex hull. Finally, we partition Q1 and Q2 in a slightly
different way, namely

Q1 = D0
1 ∪ Ql

1 ∪ Ta
1 ∪ Tb

1 ∪ (∪n̄1
n=1∆a,n

1 ) ∪ (∪n̄1
n=1∆b,n

1 ),

Q2 = D0
2 ∪ Qr

2 ∪ Ta
2 ∪ Tb

2 ∪ (∪n̄2
n=1∆a,n

2 ) ∪ (∪n̄1
n=2∆b,n

2 ),

where

Ql
1 := [−rn̄1,1, 0]× [−rn̄1,1, rn̄1,1] \ D0

1,

Qr
2 := [0, rn̄2,2]× [−rn̄2,2, rn̄2,2] \ D0

2,

and

Ta
1 := conv({(0, r0,2), (r0,2, r0,2), (rn̄2,2, rn̄2,2), (0, rn̄2,2)}),

Tb
1 := conv({(0,−r0,2), (r0,2,−r0,2), (rn̄2,2,−rn̄2,2), (0,−rn̄2,2)}),

Ta
2 := conv({(0, r0,1), (−r0,1, r0,1), (−rn̄1,1, rn̄1,1), (0, rn̄1,1)}),

Tb
2 := conv({(0,−r0,1), (−r0,1,−r0,1), (−rn̄1,1,−rn̄1,1), (0,−rn̄1,1)}).

These are the regions where the strain will be constant, forming a finite Caccioppoli
partition of Qi into polygonal domains (see Figure 8.2). All the translated squares
Qk

i are partitioned in the same way. We indicate with a further subscript k the
translations of these sets by the vector tk

i in (8.4), which are subsets of Qk
i .

8.2.2 The construction of the piecewise constant strain

For pi ∈ R2 and vi ∈ R2 for i = 1, 2, 3, we define the affine interpolation I∆ with
values vi at the points pi as follows: for every x ∈ ∆ := conv({p1, p2, p3}),

I∆(x) :=
3

∑
i=1

viΦi(x), (8.5)
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D0
2 Qr

2D0
1Ql

1

Ta
2

Tb
2

Ta
1

Tb
1

∆a,n
1 ∆b,n

1 ∆a,n
2∆b,n

2

2rn̄1

2rn̄2

Figure 8.2: The regions of the construction.

where

P :=
(

p2 − p1 p3 − p1
)

, Φi(x) := Φref
i (P−1(x − p1)),

Φref
1 (x) := 1 − x1 − x2, Φref

2 (x) := x1, Φref
3 (x) := x2.

The constant gradient of the affine interpolation is given by

∇I∆(x) =
3

∑
i=1

vi ⊗∇Φi(x)

= v1

(
P−T

(
−1
−1

))T

+ v2

(
P−T

(
1
0

))T

+ v3

(
P−T

(
0
1

))T

=
1

det P

(
v1 ⊗

(
−P22 + P21
P12 − P11

)
+ v2 ⊗

(
P22
−P12

)
+ v3 ⊗

(
−P21
P11

))
,

(8.6)

where P−T denotes the matrix (P−1)T . Clearly, if vi = wi + t for i = 1, 2, 3, with a
common translation vector t ∈ R2, then one can use wi instead of vi in (8.6).

We now define affine functions in all the components of Qk
i as follows. Let

Ri := Rαi , with αi := (−1)iα. In the top half of each square Qk
i we impose a

translation along bi of k units, in order to accommodate all the dislocations with
Burgers’ vector bi up until that point. In the bottom half instead we increment
the translation of the top by one unit, to describe an additional dislocation. The
regions will also undergo a rotation Ri to match the boundary conditions. More
precisely we have the following.
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Regions Ql
1,k and Qr

2,k. We define deformations in these regions as the boundary
conditions on the neighbouring Σ±α, that is

IQl
1,k
(x) := R−αx, x ∈ Ql

1,k,

IQr
2,k
(x) := Rαx, x ∈ Qr

2,k.

Clearly ∇IQl
1,k

= R−α and ∇IQr
2,k

= Rα, so that the strain is either Rα or R−α.

Regions Ta
i,k and Tb

i,k. We define deformations in these regions as the affine maps

ITa
i,k
(x) := Rix − (−1)ikbi, x ∈ Ta

i,k,

ITb
i,k
(x) := Rix − (−1)i(k + 1)bi, x ∈ Tb

i,k.

Clearly ∇ITa
i,k
= ∇ITb

i,k
= Ri. In particular the strains are independent of k, while

the deformations are k-dependent.

Region ∆a,n
1,k . We define I∆a,n

1,k
as the interpolation in (8.5), with points

p1 := (rn−1,1,−rn−1,1) + tk
1, p2 := (rn,1, rn,1) + tk

1, p3 := (rn−1,1, rn−1,1) + tk
1,

and corresponding values

v1 := R−α p1 + (k + 1)τεb1, vj := R−α pj + kτεb1, j = 2, 3.

The gradient of the interpolation is then

∇I∆a,n
1,k

= R−α

(
rn−1,1
−rn−1,1

)
⊗

 1
2rn−1,1

− 1
2rn−1,1

+ τεb1 ⊗

 1
2rn−1,1

− 1
2rn−1,1


+ R−α

(
rn,1
rn,1

)
⊗

 1
rn,1−rn−1,1

0

+ R−α

(
rn−1,1
rn−1,1

)
⊗

 −rn,1−rn−1,1
2rn−1,1(rn,1−rn−1,1)

1
2rn−1,1


= R−α +

1
rn,1

τεb1 ⊗
(

1

−1

)
,

where we have used that rn−1,1 = rn,1/2.

Region ∆b,n
1,k . The interpolation I∆b,n

1,k
is defined as in (8.5), with points

p1 := (rn−1,1,−rn−1,1) + tk
1, p2 := (rn,1,−rn,1) + tk

1, p3 := (rn,1, rn,1) + tk
1,

and corresponding values

vj := R−α pj + (k + 1)τεb1, j = 1, 2, v3 := R−α p3 + kτεb1.
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The gradient of the interpolation is

∇I∆b,n
1,k

= R−α

(
rn−1,1
−rn−1,1

)
⊗

− 1
rn,1−rn−1,1

0

+ R−α

(
rn,1
−rn,1

)
⊗

 rn,1+rn−1,1
2rn,1(rn,1−rn−1,1)

− 1
2rn,1


+ R−α

(
rn,1
rn,1

)
⊗

 1
2rn,1

1
2rn,1

− τεb1 ⊗

 1
2rn,1

1
2rn,1


= R−α −

1
2rn,1

τεb1 ⊗
(

1

1

)
.

Region ∆a,n
2,k . We define I∆a,n

2,k
as the interpolation in (8.5), with points

p1 := (−rn−1,2,−rn−1,2) + tk
2,

p2 := (−rn,2, rn,2) + tk
2,

p3 := (−rn−1,2, rn−1,2) + tk
2,

and corresponding values

v1 := Rα p1 − (k + 1)τεb2, vj := Rα pj − kτεb2, j = 2, 3.

The gradient of the interpolation is then

∇I∆a,n
2,k

= Rα

(
−rn−1,2
−rn−1,2

)
⊗

− 1
2rn−1,2

− 1
2rn−1,2

− τεb2 ⊗

− 1
2rn−1,2

− 1
2rn−1,2


+ Rα

(
−rn,2
rn,2

)
⊗

− 1
rn,2−rn−1,2

0

+ Rα

(
−rn−1,2
rn−1,2

)
⊗

 rn,2+rn−1,2
2rn−1,2(rn,2−rn−1,2)

1
2rn−1,2


= Rα +

1
rn,2

τεb2 ⊗
(

1

1

)
,

where we have used that rn−1,2 = rn,2/2.

Region ∆b,n
2,k . The interpolation I∆b,n

2,k
is defined as in (8.5), with points

p1 := (−rn−1,2,−rn−1,2) + tk
2, p2 := (−rn,2,−rn,2) + tk

2, p3 := (−rn,2, rn,2) + tk
2,

and corresponding values

vj := Rα pj − (k + 1)τεb2, j = 1, 2, v3 := Rα p3 − kτεb2.
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The gradient of the interpolation is

∇I∆b,n
2,k

= Rα

(
−rn−1,2
−rn−1,2

)
⊗

 1
rn,2−rn−1,2

0

+ Rα

(
−rn,2
−rn,2

)
⊗

− rn,2+rn−1,2
2rn,2(rn,2−rn−1,2)

− 1
2rn,2


+ Rα

(
−rn,2
rn,2

)
⊗

− 1
2rn,2

1
2rn,2

+ τεb2 ⊗

− 1
2rn,2

1
2rn,2


= Rα +

1
2rn,2

τεb2 ⊗
(
−1

1

)
.

The definition of the piecewise constant strain. We define the strain β : Ω →
R2×2 as

β :=


Id in (D0

i + tk
i ), k = 0, . . . , Ni, i = 1, 2,

∇I∆z,n
i,k

in ∆z,n
k , z ∈ {a, b}, i = 1, 2, k = 0, . . . , Ni, n = 1, . . . , n̄i,

Rα in Σα ∪
⋃N2

k=0(Q
r
2,k ∪ Ta

2,k ∪ Tb
2,k),

R−α in Σ−α ∪
⋃N1

k=0(Q
l
1,k ∪ Ta

1,k ∪ Tb
1,k).

(8.7)

Remark 8.2.1. A difference between our construction and the ones in [LL16] and
[FGS25] is that the separation of the half squares introduced by the Burgers’ vector
is k-dependent. In other words, while in each square the additional horizontal
shift—compared with the one above—is of one Burgers’ vector, the total shift in the
k-square is the cumulative effect of all the shifts above it, since once a dislocation is
added in the square above, the square below will have to accommodate it as well.
This is particularly clear observing the illustration of the deformation in Figure 8.3.

8.3 Admissibility and energy of the grain boundary

8.3.1 Admissibility

In this section we check that the strain β is admissible, namely that it satisfies
assumptions (H1)–(H3), and identify the set S where the curl concentrate.

By an application of Lemma 6.5.1, it is easy to see that the only lines where the
curl of β may concentrate are Σ1 ∩ Σ2, and ∂D0

i (with its translations). Indeed, one
can easily check that

∇I∆a,n
i,k
((−1)i+1e1 + e2) = Ri((−1)i+1e1 + e2), i = 1, 2,

∇I∆b,n
i,k
((−1)i+1e1 − e2) = Ri((−1)i+1e1 − e2), i = 1, 2,

showing that no curl concentrates along the interfaces between ∆a,n
i,k and Ta

i,k and

between ∆b,n
i,k and Ta

i,k, for i = 1, 2, k = 0, . . . , Ni and n = 1, . . . , n̄i. Moreover,
since I∆a,n

i,k
and I∆b,n

i,k
(and, similarly, I∆b,n

i,k
and I∆a,n+1

i,k
) have the same values on the

common vertices, no curl concentrates on the interface between the corresponding
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Figure 8.3: The deformed rectangle with η := −π/3 and θ := π/6.

regions. We recall that the curl energy penalizes the length of the interfaces between
constant values of the strain that are not rank-one connected along the direction of
the interface. While the length of ∂D0 is small, and hence a curl concentration there
would be energetically affordable in principle, the length of Σ1 ∩ Σ2 is of order one
and hence we need to ensure the values of β across it are rank-one connected. Here
is where we fix the length of the square Qi, namely 2rn̄i .

By imposing that the constant values of β in ∆b,n̄1
1,k and ∆b,n̄2

2,k are rank-one
connected along the common boundary we get the condition[(

R−α −
1

2rn̄1

τεb1 ⊗
(

1

1

))
−
(

Rα −
1

2rn̄2

τεb2 ⊗
(

1

−1

))]
e2 = 0,

which simplifies to
1

rn̄1

τεb1 +
1

rn̄2

τεb2 = 4 sin αe1. (8.8)

By using the explicit forms of b1 and b2, (8.8) fixes the free parameters rn̄i . Indeed,
we have

rn̄1 = −τε

4
sin(η − θ)

sin α sin θ
, rn̄2 =

τε

4
sin(η − θ)

sin α sin η
. (8.9)

Note that both rn̄1 and rn̄2 needs to be positive and less than L/2. While the second
condition is clearly satisfied for ε ≪ 1, the first amounts to have

sin(η) tan−1(θ)− cos(η) < 0,

cos(θ)− sin(θ) tan−1(η) > 0.
(8.10)
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Without loss of generality, we can assume to have sin(η) > 0 and sin(θ) < 0.
Indeed, if this is not the case we can swap η with η + π or θ with θ + π without
changing the Bravais’ lattice B. Then, (8.10) reduce to

tan−1(θ) < tan−1(η),

that is satisfied up to swapping b1 and b2.
Under the additional condition (8.8) the strain β defined in (8.7) satisfies (H1),

with S := ∪i,k(D0
i + tk

i ), and (H3). We now check condition (H2). To compute
the circulation of β on ∂D0

i it is sufficient to take γ as a closed curve surrounding
D0

i + tk
i (see Section 6.5). With no loss of generality we can take a concentric square,

with side-length 2rn,i. Since ∇I∆a,n
i,k

and ∇I∆b,n
i,k

(for i = 1, 2) are rank-one connected

on their common boundary, we can take either value in the computation of the
circulation of β on γ. One gets, for i = 1,∫

γ
β tds = 2rn,1

(
∇I∆b,n

1
e2 − R−αe2

)
= −τεb1,

and for i = 2, ∫
γ

β tds = 2rn,2

(
Rαe2 −∇I∆b,n

2
e2

)
= −τεb2.

Hence, condition (H2) is satisfied, and the strain β is admissible.

Remark 8.3.1 (The square lattice). We note that the distance rn̄i between disloca-
tions with Burgers vector bi in (8.9) is in complete agreement with the computations
of Read and Shockley. Indeed, in the special case of the square lattice, we have
| sin(η − θ)| = 1; moreover, by fixing e.g. η ∈ (0, π/2), we have that θ = η + 3

2 π,
hence the spacings of the dislocations are

rn̄1 ∼ τε

sin α

1
cos η

, rn̄2 ∼ τε

sin α

1
sin η

,

exactly as computed by Read and Shockley.

Remark 8.3.2 (The case of symmetric grain boundaries). Suppose that η = 0,
namely b1 = e1. The construction presented above does not immediately work
in this case, since in (8.9) the spacing of the dislocations with Burgers vector b2 is
infinite. This is due to the fact that to achieve symmetric boundary conditions only
e1 is needed.

To treat this special case one has to make the simple adaptation of taking b2 = e1
in the construction, and consequently rn̄1 = rn̄2 . Then (8.8) becomes

2
rn̄1

τεe1 = 4 sin αe1,

namely

rn̄1 =
τε

2 sin α
.

8.3.2 Energy

We compute the elastic and curl energy on a single square Qk
i , for i = 1, 2, and then

multiply it by the number of the squares in each vertical strip, since the constant
values of β are k-independent.
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The elastic energy

For the elastic energy, note that by (8.2), for ε ≪ 1 we have∫
Ω\Bλε(S))

W(β) dx ≤ C
∫

Ω
dist2(β, SO(2))dx

≤ C
2

∑
i=1

Ni

∑
k=0

n̄i

∑
n=1

∫
∆a,n

i,k ∪∆b,n
i,k

dist2(β, SO(2))dx,

where Ni + 1 = ⌈L/rn̄i⌉ is the number of squares Qk
i in the vertical strip Σi. Since

dist2(β, SO(2)) ≤ C
1

r2
n,i

ε2 in ∆a,n
i,k ∪ ∆b,n

i,k , i = 1, 2,

with C > 0, we then have the estimate∫
Ω

dist2(β, SO(2))dx ≤ Cε2
2

∑
i=1

Ni

∑
k=0

n̄i

∑
n=1

1
r2

n.i
L2(Dn

i )

= Cε2
2

∑
i=1

Ni

∑
k=0

n̄i

∑
n=1

1
r2

n,i
(r2

n,i − r2
n−1,i)

≤ Cε2
2

∑
i=1

(Ni + 1)n̄i ≤ Cε2
2

∑
i=1

n̄i
rn̄i ,i

.

We fix now n̄i := ⌈| log(α)|⌉. Since α ∼ sin(α) for α small, by (8.9) we conclude that∫
Ω

dist2(β, SO(2))dx ≤ Cεα| log α|.

By the definition of the energy (8.1), the elastic energy contribution of β is of order
α| log α|.

The core energy

The conditions we imposed on the strain β in Section 8.3.1 ensure that the curl of β
is concentrated on the boundaries of the translated inner squares ∂D0

i (within Qk
i ).

Recall that, since rn̄i ,i ∼ ε/α, n̄i = ⌈| log(α)|⌉, and 2n̄i r0,i = rn̄i ,i, we get r0,i ∼ ε.
The corresponding energy contribution is then, from (8.1), of order

α

ε

1
ε
L2(Bλε(∂D0

i )) ∼ α,

since the number of squares Qk
i in the vertical strip Σi is of order α/ε. This

contribution is smaller than the elastic energy, which is the dominant term in the
energy.

The total energy, from (8.1), can be estimated from above as

Eε(β, S) ≤ Cα(| log α|+ 1),

where S = ∪i,k(D0
i + tk

i ), in agreement with the computations of Read and
Shockley.
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Remark 8.3.3. Notice that the choice n̄i = ⌈| log(α)|⌉ is energically optimal once
rn̄i ,i is taken of order ε/α. Indeed, leaving n̄i as free parameters, the energy would
be bounded by

C
2

∑
i=1

(
αn̄i +

1
2n̄i

)
.

It is matter of a simple computation to show that the map

x 7→ αx +
1
2x

is minimized at x ∼ − log(α).
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