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Abstract

This Ph.D. thesis addresses various problems arising from materials science and
tackles them with techniques of the Calculus of Variations. The common theme
is the presence of an energy—or a sequence of them—describing some physical
system.

The thesis is divided in two parts. In the first one, we address three different
elasticity problems for lower dimensional bodies, and we employ I'-convergence
as main tool. First, we derive a hierarchy of plate models for a singularly perturbed
elastic energy allowing for different phases. Precisely, we assume that the elastic
energy is minimized on a finite number of copies of SO(3), a setting that is useful
to describe solid-solid phase transition. The singular perturbation is taken in such
a way that only one phase is present when the thickness of the plate h goes to zero.

Then, we discuss the stability of the Von Karman model for plates under loads
of order h?. The main novelty here is that we do not clamp the boundary of the
plate, that is thus free to rotate. We derive a new compatibility condition between
the limit force and the Von Karman model. If this compatibility condition is not in
force, then the Von Karman model ceases to be valid.

Lastly, we derive a hierarchy of models for ribbons, starting from an interme-
diate, two-dimensional, elastic energy. The ribbon is modelled as a strip and its
thickness has the role of a parameter in the energy. We show that this choice is
well-suited to describe the behaviour of a ribbon, and we further investigate some
scalings that are still open when starting from the three-dimensional model.

In the second part, we discuss two problems motivated by the study of dis-
locations, defects responsible for plastic response in metals. We first analyse an
anisotropic nonlocal energy of Riesz type with physical confinement, that under
certain conditions describes the interactions between edge dislocations. Such an en-
ergy can also be seen as an anisotropic variant of classical capacitary functionals in
potential theory. Under suitable assumptions, we prove existence and uniqueness
of minimizers, and we explicitly characterize them.

Then, we change framework, and we consider a two-dimensional rectangular
cross-section of a crystal whose vertical boundaries are rotated of opposite small
angles «. We show that, in a suitable modelling setting, a vertical grain boundary
emerges and its energy scaling in « is consistent with the one predicted in the
engineering literature.






Introduction

Even before our undergraduate studies, we are taught that many phenomena we
observe can be effectively described by means of a principle of minimal energy.
An object falling due to the gravitation force or a spring being pulled by our hand
follow the same underlying principle: they are approaching the state of lowest
energy—the ground state. For this reason, and many others, it was clear since the
very first development of Calculus that techniques useful to characterize and/or
find extremal points of functionals were crucial to improve our comprehension of
the world.

The Calculus of Variations offers many techniques to find, characterize, and/or
qualitatively study extremal—or critical—points of an energy functional. Their
flexibility led to great advancements in many areas of mathematics, from geometry
to regularity theory.

In this thesis, we focus on problems arising from materials science, and we
employ techniques from the Calculus of Variations to study them. The common
theme, suffice to say, is the presence of some underlying energy. The thesis is
divided in two parts: in Part I, we address various elasticity problems for lower
dimensional bodies, such as plates and ribbons; here I'-convergence is the main
tool we employ. In Part II, we answer questions arising from plasticity, with very
different approaches, specific to the problem we analyse. The present introduction
is thus divided in two parts.

1.1 Introduction to partI

Understanding the elastic response of a slender body is of great relevance in
engineering and manufacturing. For example, it is important to know what kind of
load a thin object can bear, how the small thickness is related to it, how boundary
conditions influence the elastic response, etc. An extensive literature is devoted
to the elasticity theory of slender bodies. Without claiming to be exhaustive, we
recall the monographs [Lov27; Cia97a; Cia97b; Ant05; Lew?23].

The different nature of thin objects makes the mathematical analysis extremely

7



8 CHAPTER 1. INTRODUCTION

challenging. Different techniques might be employed for flat and non-flat bodies,
such as shells and plates, or for objects with different dimensionality, as beams,
rods, and ribbons. Besides the intrinsic difference between the various types of
slender bodies, one may work in very different elastic settings, ranging from
isotropic linear elasticity, to anisotropic hyperelasticity, contributing even more to
the complexity of the field.

In the mechanical literature, one can find a great variety of properly lower-
dimensional models that aim to describe effectively the elastic behaviour of an
almost lower-dimensional object. As an example, many two-dimensional mod-
els have been proposed for plates, such as the Kirchhoff-Love equations [Kir50;
Lov27], the Von Kdrméan’s equations [F6p07; Von07; Von10], the membrane theory,
the Reissner-Mindlin theory [Rei44; Rei44; Min51], the hierarchic plate theory,
etc. (see also [Cia97a, Section 1.9] and the references contained therein). The
main advantage of these models is that they are simpler to treat mathematically
and, even more importantly, easier to handle numerically. However, in practical
applications, any thin object is properly three-dimensional. Thus, it is natural to
view these lower-dimensional models as approximations of a three-dimensional
elastic model when one or more dimensions are small enough.

These considerations lead us to a natural question: given a slender body with
some boundary conditions and/or applied loads, which model should we use to
approximate its elastic behaviour? In other words, can we mathematically justify
the validity of these models, under appropriate conditions? Indeed, many of the
lower-dimensional models mentioned above are derived by means of some a priori
assumptions, either of mechanical or geometrical nature, that we would like to
rigorously justify or to derive a posteriori.

A successful mathematical approach, which is the one we employ in this
thesis, is based on I'-convergence. This is a variational notion of convergence for
sequences of functionals introduced by De Giorgi in [DF75] (see also [Dal93; Bra06]
for a more modern treatment). The main property that makes I'-convergence well
suited to tackle our question is the following: once I'-convergence is proved with
respect to some topology T, if the sequence of functionals is equicoercive in T, then
(quasi)-minimizers converge to minimizers of the I'-limit, where the convergence is
in the topology T. Roughly speaking, this means that ground states (or solutions)
to the three-dimensional problem are good approximations, in the sense of T, of
the ground states (or solutions) of the lower-dimensional problem.

It is clear that the choice of the topology is a critical issue. Indeed, we should
pick one coarse enough to have equicoercivity, but finer enough to prove I'-
convergence. Chapters 3 to 5 have thus the same structure: firstly, we choose
the topology that is naturally induced by the energy to ensure equicoercivity, then
we move to the proof of I'-convergence.

In this thesis we focus on two kinds of slender bodies: plates in Chapters 3
and 4 and ribbons in Chapter 5.

1.1.1 Rigorous derivation of plate models

In recent years, a vast literature has been devoted to the rigorous derivation of
plate models by means of I'-convergence. To better understand these results, let us
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introduce some notation. Consider the reference configuration of a hyperelastic
thin plate (), :== S x (—h/2,h/2), where the mid-plane S is a sufficiently regular
subset of R? and # is the small thickness. Given a deformation w : Qp — R3, its
elastic energy takes the form

d
/Q W(Vw)dx,

where W is the elastic energy density. Since a thin plate can easily undergo large
rotations, the correct framework is that of nonlinear elasticity. We assume that
), is not prestrained, that is, Id minimizes YV and we suppose W to be frame
indifferent, namely

W(RM) =W(M) VR eSO(3), VM e R>3, (1.1)

In particular, W is minimized at SO(3). Property (1.1) has a simple physical
interpretation: the energy is invariant under rigid changes of the reference frame.
We may assume the body to be subject to some dead loads f; acting on the bulk.
Hence, the total energy has the form

dx — ~wdx.
/QhW(Vw) x thh wdx

Note that the forcing term involves the deformation and not the displacement,
since this change has no effect from a minimization standpoint.

: ——

Q=S x (=h/2,h/2)

Figure 1.1: A plate and its deformation.

We also introduce the energy per unit volume, and write it in terms of a rescaled
deformation as

Li(y) = % Qh W(Vw)dx = /Q W(Vyy)dx,

where y(x1, X2, x3) == w(x1, x2,hx3), and V}, is the rescaled gradient (see Section 2.1
for its definition).

The first I'-convergence result for plates in this setting is due to [LR95], where
the authors study the I'-limit of

1 1 -
7 QhW(Vw)dx—ﬁ/thh-wdx—Ih(y)—/ﬂfh-ydx,

when the plate is clamped on a portion of the boundary and the load f}, is supposed
to be of order 1. Here, f,(x1,x2,x3) := fj,(x1,Xx2,hx3). When h — 0 they obtain
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the membrane theory: the limiting deformations are properly two-dimensional
and their energy depends solely on the stretching they produce on S and does
not account for bending. The I'-convergence is obtained assuming some p-growth
condition from above on the energy density V. We mention also the further
improvement in [AMO8], where the same result is proved under the more physical
assumption that W(M) = 4o if det(M) < 0.

As noted in [LR95, Theorem 10], compression requires no energy at the limit in
the membrane theory. For example, if S is a rectangle, the minimum energy under
uniaxial compressive boundary conditions scales like h* (see also [FJM02, Section
6]). Thus, one should look at the I'-limit of

}113/0;1 W(Vw)dx = %1,1@). (1.2)

In contrast with the membrane regime, here the energy has a higher scaling in
h. Assuming W to be minimized only at SO(3), this heuristically means that
the deformation gradients should approach, in some suitable sense, the set of
rotations. In order to compute the I'-limit, quantitative information about this rate
of convergence is crucial.

The needed breakthrough was obtained by Friesecke, James, and Miiller in
[FIMO02], where they proved both a rigidity estimate, and the I'-convergence of
(1.2) to the Kirchhoff-Love energy under compatible boundary conditions and
with loads fj, of order h? (the latter case being considered in the subsequent work
[EIMO6]).

The rigidity estimate gives a quantitative version of the well-known result
by Liouville (see also [Res67] for a nonquantitative generalization of Liouville’s
theorem) stating that a map w satisfying the differential inclusion Vw € SO(3) is a
rigid rotation, i.e., w(x) = Rx + ¢ for some R € SO(3), ¢ € R3. Precisely, given a
domain Q C RR3, there is a constant C > 0, depending on (), such that, for every
w € W12(Q; R®) there exists a rotation R € SO(3) satisfying

[Vw — R|[7, < C|| dist(Vw,SO(3))|I72. (13)

The estimate above can also be interpreted as a nonlinear version of Korn’s inequal-
ity, since the tangent space to SO(3) at the identity is the space of skew-symmetric
matrices R} .

For the thin domain (), it can be seen that the constant C in (1.3) behaves as

h~2. Thus, assuming the coercivity condition
W(M) > Cdist*(M;SO(3)) VM e R¥3, (1.4)

and rewriting (1.3) in the scaled variables, we see that a bound on the rescaled
energy (1.2) provides a uniform control in / on the distance of Vi to some rotation.

Using this result, one can show that the limit deformations obtained in this
case are isometric immersions of the mid-plane in IR®. This is consistent with the a
priori assumption of the Kirchhoff-Love theory saying that the mid-plane remains
unstreched. The I'-limit weights the second fundamental form of the isometric
immersion, thus it penalizes bending.
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It is natural to wonder what limiting behaviour emerges from a rescaling of I,
by a power h™* with0 < & < 2and a > 2.

For 0 < a < 5/3, the admissible limit deformations are the so-called short
maps: immersions y of S in R® such that Vy” Vy < Id (see [CMO07]). The energy is
trivial on the set of admissible deformations. In this case, the theory is also called
constrained membrane theory.

The I'-convergence of h~*I;;, for 5/3 < a < 2 seems to be out of reach at the
present time (see [GO97; Bel+02; JS01; CMO07] for related results).

The case & > 2 is treated in [FJM06]. As we may expect, also in this regime
the rigidity estimate plays a crucial role. The authors prove that, up to a rotation
and to a translation, deformations with bounded energy converge to the identity.
Thus, the quantity of interest is now the deviation from the identity, namely, the
displacement. The authors show that the x3 average of the in-plane displacements
uy and of the out-of-plane displacements v, have different scalings. Precisely,
up ~ max{h?*7=2,h7} and v, ~ h7~!, where 7 := a/2. The regime a = 4 is a
threshold in the behaviour of u;, and, as a consequence, in the behaviour of the
energy, too.

When 2 < a < 4, the limit u of the rescaled in-plane displacements and the
limit v of the rescaled out-of-plane displacements satisfy the constraint

Vul +Vu+Vo® Vo =0, (1.5)

and the energy is quadratic in V?0v. Constraint (1.5) has a geometric interpretation.
Precisely, u and v satisfy a so-called matching isometry condition up to the second

order, that is, the map
x 0 > (U
Ye={o0) ") T o

satisfies Vy! Vy. —Id = O(e®). It can be proved that (1.5) is equivalent to the
Monge-Ampere equation det(V?v) = 0 and that the latter ensures the existence of
an exact isometry with v as third component. This theory has been named by the
authors as the constrained Von Kdrmén's theory.

If « = 4, they retrieve the classical Von Karman’s energy. Constraint (1.5)
is relaxed, and the deviation from it appears as a stretching term in the energy,
together with a quadratic term in V2, accounting for bending.

When a > 4 they obtain the usual linear theory, with the energy being quadratic
in both V?v and Vu! + Vu.

We also mention the recent preprint [FGZ25], where the Reissner-Mindlin
theory is rigorously derived.

Multi-well energies

All the I'-convergence results we recalled for @ > 2 are obtained under the assump-
tion that W is minimized exactly at the set of rotations. This is a fundamental
hypothesis to apply the rigidity estimate (1.3). In Chapter 3 of this manuscript,
we are interested in treating the case where )V is minimized at a finite number of
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copies of SO(3), that we call wells. Precisely, we assume that VV is minimized at
the set

l l

K:=Jso@)u; = K,
i=1 i=1

where Uy, ..., U; are symmetric and positive-definite matrices. This setting is

relevant, for example, in the modelling of solid-solid phase transitions (see [BJ87]).

Assuming (1.4) with SO(3) replaced by K, the boundedness of the energy
would grant us L2-closeness of the deformation gradients to K. However, this
is not enough to get compactness for sequences of deformations with bounded
energy. Indeed, it is well-known that the rigidity estimate fails without further
assumptions on the wells. For example, if two of the wells are rank-one connected,
it is possible to construct continuous deformations with zero elastic energy, whose
gradient oscillates between the two wells.

A rich literature has been devoted to the extension of the rigidity estimate to
the multi-well setting under suitable separation properties for the wells. For two
strongly incompatible wells, the rigidity estimate has been proved in [CM04] (and
later with a different proof in [DS06]). A further generalization is given in [CC10],
for a finite number of well-separated wells.

One possible way to overcome the loss of compactness is to singularly perturb
the elastic energy by adding a higher order term of the form

w(h) [Vl d,

where 77(h) — 0ash — 0 and p > 1is a suitable exponent. This is a classical
way of selecting preferred configurations, as for instance in the Van der Waals-
Cahn-Hilliard theory. Indeed, this additional term introduces a competition in the
minimization problem: the elastic energy favours deformations with gradient in K,
while the perturbation penalizes transitions between the wells.

Various analyses have been carried out in this setting. In the membrane scaling
« = 0, a full description of the I'-limit of the perturbed energy with p = 2 is ob-
tained in [FFL06; DFL10]. The expression of the I'-limit depends on the behaviour
of n7(h) /h. We also recall the work by Shu [Shu00], where an additional homogeniz-
ation parameter is taken into account. Note that in the original work on membrane
theory [LR95] no conditions on the minimization set VV were required. In particu-
lar, no penalty term is needed to derive membrane theory in case of a multi-well
energy. We also recall the work [FP04], where I'-convergence in the membrane
regime is computed in a different topology. Using the notion of Young’s measure,
the authors manage to preserve information on the fine oscillations between the
wells.

In Chapter 3, we focus on the energy regimes « > 2, and we do not assume
any hypotheses of separation or connectedness of the wells. We follow ideas from
[Ali+18], where the linearization of a multi-well elastic energy is studied. We show
that the perturbation coefficient #(h) can be chosen in such a way that, at the limit,
deformation gradients are forced to fall into a single well and at the same time
the perturbation term becomes negligible. Under these scaling assumptions on
11(h), we show that the L2-norm of the distance of the deformation gradient from a
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specific well can be bounded by a suitable power of the perturbed elastic energy
(see Section 3.2). In particular, once such a well has been identified, the usual
rigidity estimate can be applied to deduce compactness.

The hierarchy of plate models that we derive is similar to the one discussed
earlier. However, a key difference is the dependence of the limit models on the
well around which we linearize.

For & = 2, we retrieve the Kirchhoff’s model (see Theorem 3.1.1). Sequences of
deformations with I;, ~ h? converge to isometric immersions of the mid-plane into
IR?, for a flat metric depending on the well. The resulting model is similar in spirit
to the one obtained in [BLS16], where the authors consider a prestrained model
and the limit deformation realizes an isometric immersion of the mid-plane for a
metric depending on the prestrain.

For 2 < a < 4, the I'-limit is given by the constrained Von Karman’s model,
where the Von Kédrméan's constraint now depends on the well and takes the form

Vul + Vu+ U es|*Vo® Vo =0. (1.6)

Here SO(3)U; is the well selected by the energy, and # and v are the limiting
in-plane and out-of-plane displacements with respect to the reference deformation
x — U;x. As for the single-well case treated in [FJMO06], (1.6)is a matching isometry
condition up to the second order, for a well-dependent flat metric (see Section 3.1).

For « = 4 and a > 4, we retrieve the Von Karman’s and the linearized Von
Kéarmdn’s model, respectively. All the I'-convergence results for « > 2 are stated in
Theorem 3.1.3. The Von Kdrmdn’s model we obtain is similar to the one derived in
[RLR17] in the prestrained case.

Concerning the proofs, once compactness is established, the liminf inequality
can be obtained arguing as in [FJM02; FJM06]. Since the penalty term requires
additional regularity, the truncation argument used in [FJM02; FJMO06] for the
construction of the recovery sequences cannot be applied and is replaced by
suitable approximation results. In particular, for 2 < o < 4 we need to assume
some higher regularity for the mid-plane S.

The last part of Chapter 3 is devoted to the convergence of (quasi-)minimizers
for the pure traction problem, under the action of some dead loads f;. We assume
fu to be of order h7*1, where v = a /2. For a > 2 we expect the limiting force term
to depend only on the out-of-plane displacement (which is of order #7~1) and not
on the in-plane displacement (which is of order W72 for2 < a < 4, h" for a > 4).
This is indeed the case. However, since the plate is not clamped, the presence of the
force term may reduce the rotation invariance of the problem. To analyse this issue,
we follow the approach used in [MM21], where the notion of optimal rotations
is introduced. These are rotations preferred by the forces, that can be different
from the rotations selected by the rigidity estimate, around which linearization
takes place. We show how this concept can be adapted to the dimension reduction
setting. In this framework, we deduce a minimization property for the limit of
(quasi-)minimizing sequences. The forcing term we obtain at the limit is of the
form

/ f- Rujflegv dx,
Q

where R is an optimal rotation, U; is the well selected by the energy and v is the



14 CHAPTER 1. INTRODUCTION

limit of the rescaled out-of-plane displacements. In particular, the force acting
on ve3 is of the form Uj*lRT f. A precise statement of these results is given in
Theorems 3.1.6 and 3.1.8.

The content of Chapter 4 can also be found in [Tol25a].

The pure traction problem for the Von Karman’s model

After its rigorous derivation, the Von Kdrmdn’s model has received great attention.
Without attempting to be exhaustive, we recall some lines of research: derivation
of viscoelastic Von Karman’s models for plates [FK20], homogenization of Von
Karman’s plates models [Vell6; NV13], and analysis in the dynamic case of the
Von Kérmaén's equations [AMM10; AMM11].

In [FJMO06] the authors show that the derivation of the Von Karmén’s model,
corresponding to the energy regime & = 4, is compatible with loads f;, of order h®
in the normal direction to the plate. A natural question is whether forces acting in
any direction can be included in this analysis. Since the in-plane displacements
scale as /i? the applied loads in the planar direction should be of order 1? to be
preserved at the limit. Howevere, such a choice is compatible not only with the Von
Kédrmdn'’s regime, but also with the Kirchhoff’s and the constrained Von Kadrman'’s
regimes. This is due to the fact that in the last two cases, we have, respectively,

(i) in-plane displacements of order 1 and elastic energy of order h?,

(ii) in-plane displacements of order h*~2 and elastic energy of order h* for some
2<a <4,

Therefore, in both scenarios the work done by the forces and the elastic energy have
the same scaling. Thus, a sequence of deformations y;, with total energy of order
h* may have elastic energy that scales as h* for any 2 < & < 4, leading to different
limiting behaviours. In particular, if « < 4, such a sequence has unbounded
elastic energy in the Von Kdrmdn's regime, resulting in a loss of compactness. This
phenomenon can be interpreted as an instability of the Von Kdrmén’s model under
the presence of some load (see [LM09]).

As we already remarked, the situation is different when the applied forces are
purely normal. Indeed, in this case, the 3 scaling for forces is only compatible
with the Von Karman regime, where the normal displacement of order h. As a
consequence, there is no ambiguity between the elastic energy regimes.

Planar forces have been considered in [LM09] using a clever exclusion principle.
The authors noted that there is a critical load f that leads to the loss of validity of
the Von Karman’s model. Under some additional assumptions, they also proved
that beyond this critical load, the infimum of the total Von Kdrmén’s energy is —co.
However, to avoid the mix-up of planar and normal components of both forces
and displacements due to rotation invariance, they assumed part of the boundary
to be clamped.

In Chapter 4, we extend this analysis to the purely Neumann case. Since
the body is free to rotate, one cannot distinguish between normal and planar
components of the applied forces. Thus, we suppose to have a sequence of forces
fu that scale as 1? in all directions. For simplicity, we further assume the sequence
to be of the form f;, = h?f for some given f.
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The first question to understand is how the load affects the rotation invariance
of the plate. In general, one cannot expect the body to prefer just one specific
rotation, in contrast with the case of clamped boundary conditions. It turns out
that the concept of optimal rotations, already recalled in Chapter 3, is exactly
the one needed. The set R of such rotations is a submanifold of SO(3) that
in our framework enjoys some additional properties which follow by the two-
dimensional nature of the problem.

Secondly, we investigate how the stability conditions defined in [LM09] can be
extended and how they relate to the rotational degree of freedom that the plate
enjoys. We prove that one of the following alternatives holds (see Theorem 4.1.3
for a precise statement):

(i) either the load is strong enough to have a non-trivial minimizer of the Kirch-
hoff model (failure of the stability condition (51)),

(ii) or the load is strong enough to have a non-trivial minimizer of the con-
strained Von Kdrman’s model (failure of the stability condition (52)),

(iii) or the Von Kdarman’s model is valid.

This result is similar in spirit to [LM09, Theorem 4]. Moreover, in Theorem 4.1.4 we
show that the stability condition (S1) implies condition (S2) as soon as the intensity
of the load decreases. The above implication is analogous to [LM09, Theorem 6].

Compared to the analysis in [LM09], we observe a new phenomenon, which
is one of the main novelties of this work: if for some optimal rotation R we have
RTf - e3 # 0, then the stability condition (S1) must fail and both the Von Kérman’s
model and its constrained version do not apply. More precisely, whenever R’ f -
e3 # 0, every sequence of quasi-minimizers, whose total energy scales like h*,
has unbounded elastic energy in both the Von Karman’s and the constrained Von
Kéarman’s regimes. The privileged role of e3 is due to it being the direction along
which the plate is thin. The precise statement is given in Theorem 4.1.2. One
can interpret this result in the following way: it is possible to have a non-trivial
minimizer of the Kirchhoff model either increasing the load (as already shown
in [LMO09]) or applying a force for which there is an optimal rotation R such that
RTf-e3 #0.

Lastly, similarly to [LM09, Theorem 27], we prove that if (52) holds and R f -
e3 = 0 for every optimal rotation, the total Von Kdrmdn's energy attains its infimum.
Conversely, if (52) fails, the Von Karman'’s total energy is unbounded as soon as
the load undergoes a slight increase. In other words, f is a critical load. These
results are proved in Theorem 4.1.5.

The content of Chapter 4 can also be found in [Tol25b].

1.1.2 Rigorous derivation of models for ribbons

A ribbon is a slender body whose length is much larger than its width, which in
turn is much larger than its thickness. Mathematically, it can be described by a set

Qp=(0,L) x (=h/2,h/2) x (=6,/2,6,/2),

with L > 0 being its length, & < L being its width, and J;, < h its thickness.
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A renewed interest in the rigorous derivation of one-dimensional models for
ribbons via I'-convergence has blossomed in recent years, motivated by the rich
variety of behaviours that may emerge, depending on the behaviour of é, with
respect to . We recall also the setting J;, ~ h for the description of rods, treated in
[MMO03; MMO04; Sca06; Sca09].

Assuming the ribbon to be hyperelastic, the energy per unit volume takes the

form
1

I(w) = @ /Qh W(Vw)dx = /()W(Vh/,shy)dx,

where y(x1, X2, x3) = w(x1, hxp, 83x3), Q== (0,L) x (=1/2,1/2)2,and V, 5, is the
rescaled gradient.

Inspired by the derivation of plate theory in [F]M02; FJMO06], the I'-convergence
of various rescalings of I, has been studied in [FMP12; FMP13]. Assuming the
energy Ij, to scale as s%, the authors distinguish three regimes:

(i) the subcritical regime, for 6, < ¢y,
(ii) the critical regime, for &, ~ ¢,
(iii) the supercritical regime, for oy, > ¢,.

The subcritical regime corresponds roughly to the scaling 0 < a < 2 for
plates. Indeed, if €, ~ 1 they retrieve the model already derived in [ABP91] for
strings, that inspired the work [LR95] for plates. The limit energy depends only on
stretching and does not account for bending. When instead ¢j, — 0, the limiting
deformation are short maps defined on the mid-line, and the limiting energy is
zero on the set of such deformations.

The critical regime corresponds to the Kirchhoff-Love theory for plates. How-
ever, the authors manage to compute the I'-limit only for h? < Jj,. In this case,
they show that sequences of deformations with bounded energy identify a Frenet—
Serrin frame dy,d,, d3 describing an isometric immersion of the mid-line in R3.
The frame satisfies the additional constraint

dydy -dy = d1ds - dy = 0. 1.7)

Mechanically, (1.7) can be interpreted as a no-bending condition within the plane
of the strip. The cases Jj, < h? and &), ~ h? are still open even tough a candidate
I-limit is known for §;, < 12, as we see later.

The supercritical regime is analogous to the Von Karman’s energy scaling
« > 2 for plates. Three different models emerge, depending on the asymptotics
behaviour of ¢,/ (5,%. Roughly speaking, they correspond to the constrained, the
standard, and the linearized Von Karman'’s theory for plates. As it happens for
plates, in the supercritical regime the quantity of interest is the displacement, since
deformations approach the identity, up to a rotation and to a translation. Up to
rescaling, the components uy, 1, 1y, 5, and uy, 3 of the displacement are proved to
converge to u1, tp, and u3, having a precise structure:

(a) ifg, < (5,3 or gy ~ (5%, then u is a Bernoulli-Navier displacement, that is, 1,
and u3 are independent of x; and x3, while u; is affine in both x; and x3,
with coefficients given by —dju, and —dqu3, respectively,
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(b) ifej, > 62, thenuy = 0and uq, u3 depend only on x; and satisfy the constraint
20411 + (91u3)? = 0. (1.8)

Condition (1.8) is a one-dimensional version of (1.5). In the subcase ¢, > (5}21,
difficulties similar to the ones of the critical case are encountered, and the I'-limit
is computed only under the additional condition h%¢), < 7.

The work of Chapter 5 is motivated by better understanding the regimes where
the identification of the I'-limit is still lacking. Heuristically, the two conditions
h? < &), in the critical regime and %, < 47 in the supercritical regime mean
that the thickness &y, is not so small with respect to the width &, so that the ribbon
behaves not so differently from a rod. Instead, when the thickness is much smaller
that the width (e.g., when 8, < h? in the critical scaling), we expect the ribbon
to behave more similarly to a plate. As a first approximation, one may start from
a two-dimensional model on a thin strip O, := (0,L) x (—h/2,h/2), where the
thickness is completely neglected. Its I'-limit as # — 0 should possibly provide
insights on the missing cases in [FMP12; FMP13].

In [Fre+15], the Kirchhoff-Love model for plates is considered as starting point.
The I'-limit is a corrected Sadowsky’s model, as it coincides with the relaxation
of the model proposed by Sadowsky in [Sad30] (see also [HF16] for an English
translation), to describe the optimal shape of a Mobius band at rest (see also
[Fre+22; Fre+16]). This functional is expected to coincide with the I'-limit in the
critical regime when ¢;, < h2.

In [Fre+17], starting from two-dimensional Von Karman’s models on the strip
)y, a full characterization of their I'-limits as # — 0 is shown. For the Von Kdrman’s
model and the linearized model, the I'-limit coincides with the one computed in
[FMP13] in the supercritical regime when g, ~ 5,% and g < (5,%, respectively. For
the constrained Von Kdrmén’s model instead, a different I'-limit of Sadowsky’s
type is found, that should correspond to the missing subcase 62 < h2ej,.

In this thesis we study an intermediate two-dimensional energy, with the hope
of shedding light on the missing I'-limits in the three-dimension to one-dimension
convergence. For a thin strip ), := (0,L) x (—h/2,h/2) we introduce the two-
dimensional energy

/|VwTVw—Id|2dx+(5,3/ |V2w|? dx,
O Oy

that now depends on the thickness parameter Jj,. As it is customary, we consider
the energy per unit volume, and we rescale the strip to () := ()1, writing the energy
in terms of the rescaled deformation

En(y) = [ V" Vay 14 Pax+ 5} | |[ViyPdx. (1.9)

The mechanical interpretation of this energy is clear: the first term penalizes
stretching whereas the second penalizes bending.

Energy (1.9)is frequently used in the physical and engineering literature. It
can be seen as an expansion of the three-dimensional energy with respect to the
thickness parameter. Indeed, the results recalled in in the previous sections show



18 CHAPTER 1. INTRODUCTION

that the stretching term is of order one in the thickness, whereas the bending term
is of order 62.

In Chapter 5, we study the I'-convergence of 6, “Ej, for « > 2. These scalings
correspond exactly to the critical (x = 2) and the supercritical (¢ > 2) regimes
considered in [FMP12; FMP13].

Our first result is that the I'-limit of 5, 2E), depends on the asymptotic behaviour
of 6,/ h?, as expected. When ¢, > h? we obtain the same model of [FMP12] (see
Theorem 5.2.2), whereas when &), < h? we show the I'-convergence to the corrected
Sadowsky’s model mentioned above (see Theorem 5.2.7).

Let us briefly clarify the role of the ratio &, /h2. The quantity &, /h? is linked with
the behaviour of det(V7y), that roughly speaking represents the Gauss’ curvature
of the deformed strip y(()). Recall that for an isometric immersion, the Gauss’
curvature is zero, and so is det(V7y). It is clear by the form of the energy 4, 2E,
(see (1.9)) that the faster Jj, is going to zero, the closer y should be to an exact
isometric immersion of the strip. This phenomenon can be quantified by means of
the following estimate:

On
h2’
for a sequence y, such that Ej, (y,) < C&2. In particular, when 6, < h?, the quantity
det(V2y,,) converges to zero. Instead, when &), > h?, the energy fails to provide
any bound on det(V3y},). In other words, when 8, < h?, deformations are so close
to isometric immersions that the I'-limit coincides with the one computed from the
Kirchhoff’s functional. The relaxation of the constraint det(V2y) = 0 leads to the
corrected Sadowsky’s model.

In Section 5.3 we discuss the I'-convergence of 6, “Ej, for « > 2. We identify
three different regimes:

| det(Viyn)llp < C (1.10)

(i) the constrained Von Karmén's regime 2 < o < 4,
(ii) the Von Kdrman's regime a0 = 4,
(iii) the linearized regime « > 4.

In the last two cases, we show that the I'-limits coincide with the one obtained in
[FMP13].

When o € (2,4), we split the analysis depending on the asymptotics of 5277 /h?,
where v := «/2, in agreement with the regimes identified in [FMP13]. As in the
scaling « = 2, the behaviour of (55_7/ h? is linked with a suitable rescaling of

det(V2y). In both cases 5}2177 < h? and 5577 > h? we find that the T-limits
coincide with the ones obtained in [Fre+17] and [FMP13], respectively.

Our results show that the intermediate energy Ej, is a good candidate to un-
derstand the I'-limit behaviour of Ij, for different scalings. Unfortunately, at the
present time we are not able to identify the T-limit when J), ~ h? for the energy
5, 2E;, and when 5277 ~ h? for the energy o i Ep. These regimes are completely
open and no candidate I'-limit is known. In these cases, estimates of the type (1.10)
are still enough to guarantee convergence of the Gauss’ curvature, however, to a
limit possibly different from zero. Further comments on the specific difficulties we
encounter are highlighted at the end of Section 5.2.
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The content of Chapter 5 is part of an ongoing project [MT25] in collabora-
tion with M. G. Mora, inspired by some preliminary computations contained in
[Fre+25].

1.2 Introduction to part II

Under small tensile load most solid materials show elastic behaviour: once the
load is removed, the body goes back to its original shape. However, when the
strain reaches a critical threshold—the yielding point—the deformation becomes
irreversible and plastic phenomena intervene. The mathematical modeling of
plasticity is a subject of ongoing debate and research, where multiple models
and theories have been proposed. Without claiming to be exhaustive, we refer
to [Lub08; Hil98] for an extended treatment. For metals, it is widely accepted in
the mechanical literature that plastic effects are the macroscopic result of both the
emergence and the motion of dislocations—microscopic defects in the crystalline
atomic structure. In this manuscript, we focus on this latter class of materials.

In a two-dimensional setting, assuming the crystal lattice of a metal to be
perfectly square, we can envision the atoms arranged along parallel lines. An
edge dislocation is the defect produced by the presence of an extra half-line of
atoms. The microscopic presence of an edge dislocation is usually described by
the so-called Burgers’ vector, that describes the amount and the direction of the
atomic slip. In this setting, the Burgers’ vector is defined as the vector needed to
close a loop around the defect. More precisely, imagine drawing a loop around the
defect in the crystal lattice, and then to draw the same circuit in a perfect reference
crystal. In the presence of a defect, the new loop is not closed, and the missing
vector needed to close the loop is exactly the Burgers’ vector (see Figure 1.2). Note
that the Burgers’ vector always lies in the lattice itself.

Figure 1.2: The Burger’s vector b

The problems addressed in this thesis are framed in a semi-discrete setting,
where the metal is treated as a continuum, averaging out its crystalline structure,
whereas dislocations are still modelled as point defects.

In Chapter 7, we consider a d-dimensional extension of a two-dimensional non-
local interaction problem for edge dislocations, and we provide a characterization



20 CHAPTER 1. INTRODUCTION

of the ground states of the corresponding energy.

In Chapter 8, we change framework, and we focus on the emergence of the
so-called grains. It is empirically observed that the crystal structure of a metal after
a plastic deformation can be divided in regions, called grains, where the lattice
has different orientations. The dislocations tend to accumulate on the boundary
between these regions—the grain boundary. Starting from a model introduced in
[LL16] we propose a grain boundary construction, and we show that its energy
scaling agrees with the empirical one conjectured in [RS50].

Nonlocal interaction of dislocations and other particles

Suppose to have a two-dimensional isotropic crystal lattice and assume that all
dislocations have the same Burger’s vector, say e;. Following computations from
[Mor24, Section 1.1] and [HL82, Chapter 13—4], one can show that in a semidiscrete
setting the force experienced by a dislocation located at a point x € R? due to the
presence of another dislocation at the origin is of the form F(x) = —(¢VW(x),0)
for some material constant ¢ > 0, where

x
W(x) == —log |x| + e
In this context F is called the Peach—-Kohler force, and W can be regarded as its
potential energy. Assuming to have two dislocations at points x, y € R?, their

interaction energy is then

(x1 —y1)?

W(x —vy) = —log|x —y|+ .
(x—y) glx—yl F:

The first term of the energy is repulsive and would prefer the dislocations to be as
far as possible, while the second term favours the vertical alignment of dislocations.

Considering n dislocations at the points x1, ..., x; and letting n — oo, it can
be shown (see, for example, [Lan72, Point 2.3.12] or [BHS19, Section 4.2]) that the
rescaled discrete energies

1 n
o Wi =)
i,j=1
i#]
I'-converge in a suitable topology to the continuous energy

100 = [, [ W= v)dn()du(y),

where y is a probability measure.

A classical conjecture in plasticity is that at equilibrium dislocations having all
e1 as Burgers’ vector should pile up vertically in a wall-like structure (see [DS04;
LBN93; AHL16]). In our framework, this would amount to show that minimizers
of I have a one-dimensional and vertical support. Note, however, that because of
the repulsive nature of W, existence of minimizers can be granted only if some
confinement term is included in the energy.
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A first result in this direction is obtained in [MRS18]. There, the dislocations are
assumed to attract each other quadratically. The authors show that the minimizer
of the interaction energy I augmented by a quadratic confinement term is the
so-called semicircle law, a measure supported on a segment.

Since then, further generalizations of this result in various directions have
been proved. Firstly, a tuning of the anisotropy term by a coefficient « has been
added in [Car+19]. Then, the same problem has been considered in [MS21] where
the quadratic confinement is replaced by the constraint that measures must have
support inside a two-dimensional ellipse E.

Lastly, noting that the logarithmic kernel is the two-dimensional Coulomb’s
kernel, the problem has been considered in R? with W replaced by an anisotropic
Riesz’ kernel of the form

W) = o),

IEANE]]

where @ : §9~1 — R is the anisotropic profile and s € (0,d). Note that the
Coulomb’s kernel is retrieved when s = d — 2, while the logarithmic kernel by a
suitable limit as s — 0. This extension to higher dimensions has been treated in a
series of works where the confinement is always assumed to be quadratic. Without
claiming to be exhaustive, we recall [CS22; CS23a; CS23b; Mat+23a; Mat+23b;
Fra+25].

In Chapter 7, we contribute to this line of research by characterizing the minim-
izer of

L) = [, [ W= ndu@anty),  p e PE)

over the set of probability measures y with support contained in a prescribed
d-dimensional ellipsoid E.

When @ is constant, the interaction is isotropic and the study of minimizers
of I; is a classical problem in potential theory. If E is a compact set, one can
show that the minimizer exists and is unique. The reciprocal of the minimal
energy is the s-capacity of E (see [Lan72, Chapter II], where the s-capacity is called
(d — s)-capacity). The explicit characterization of the minimizer pjso s of Is for ®
constant and E given by a ball dates back to the works of Szeg6, Pélya, and Riesz
[SP31; Rie88a; Rie88b]. A renovated interest brought new and different proofs, see
[DKK16]. For E given by the ball By centred at 0 with radius 1, the expression of
the minimizer is

o JeaU =[x LA)LB ifd—2<s<d,
Hisoss - T L ) ) if0<s<d-—2

where ¢, 4 is a normalization constant (see Lemma 7.3.1 for its exact value). The
value s = d — 2, corresponding to the Coulomb’s kernel, acts as a threshold: in
the super-Coulombic regime the minimizer is absolutely continuous with respect
to the Lebesgue measure and is supported on the whole ball, whereas in the sub-
Coulombic regime it becomes singular, and its support reduces to the boundary.
In Chapter 7 we consider a rather general anisotropic profile &, and we show
that the minimizer of I; exists, and it is unique provided the Fourier transform Wi
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is nonnegative. Under the same assumption, we prove that the minimizer can be
characterized by the following Euler-Lagrange equations (see Theorem 7.2.1):

suppyu C E, (EL1)
(Wsxu)(x) = C for p-a.e. x € supp i, (EL2)
(Ws*u)(x) > C forevery x € E\ N with Cap,(N) =0, (EL3)

for some constant C, where Cap is the s-capacity. Note that these conditions are
classical in potential theory, and are consistent with those of the isotropic case.

Under the condition W; > 0, we show that in the super-Coulombic regime,
the minimizer of I is the push-forward of pjs, s onto E. In particular, the aniso-
tropy plays no role in the optimal distribution, which is identified solely by the
confinement term. This is a surprising result, that is however consistent with the
one already proved in dimension two for the logarithmic kernel in [MS21].

The strategy of the proof is rather simple, and it amounts to show that the
push-forward u£ of s, s onto E solves the Euler-Lagrange equations. To prove
(EL2), we derive a novel integral formula for the potential function Ws * uf in
terms of the Fourier’s transform of W (see Theorem 7.3.6). This idea was already
used in [Fra+25], where however the corresponding formula for the potential
function was proved only for s € (0,5] N [d — 3,d). Here, instead, using a different
approximation technique, we manage to treat any Riesz exponent s € (0,d) in any
dimension d. We remark that the formula we derive is valid only inside E. This is
enough for our purposes, but it is not sufficient to extend to any dimension the
results proved in the case of a quadratic confinement (see [Fra+25]).

Lastly, we discuss the sub-Coulombic regime s < d — 2, and we show that
in this case the anisotropy may change the optimal distribution. To do so, we
restrict ourselves to the easier case E = Bj, and we provide an explicit example of
anisotropy ® for which pjs s is not the minimizer (see Section 7.4).

The main results of Chapter 7 can also be found in [Mor+25].

Construction of grain boundaries

In the last chapter of this thesis we shift our attention to a semi-discrete model
for grain boundaries proposed in [LL16], and we consider a two-dimensional
rectangular section QO C R? of a crystal. As dislocations are microscopic defects, we
introduce a small parameter & > 0, representing the small size of the lattice cell. We
consider T and A, two positive parameters representing the rescaled Burgers’ vector
length and the rescaled size of the core region around a dislocation, respectively.
Lastly, we introduce a Bravais’ lattice B3, corresponding to the crystalline structure
of the material. We remark that, in semi-discrete models, there is coexistence of
both macroscopic and microscopic scales. Thus, even if the material is represented
as a continuum, the fact that it has a crystalline structure is somehow taken into
account by the quantities ¢, A, and 7 and the Bravais’ lattice B.

Heuristically, at a distance from the defects comparable to the lattice spacing,
the material’s crystalline structure should locally resemble the reference lattice
after a distortion. Conversely, the continuum approximation should break down
close to the defects. The model proposed in [LL16] describes exactly this situation.
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We may divide Q) in two regions: B).(S), where the dislocations concentrate
and Q \ B, (S), where instead the material is a local distortion of a perfect lattice.
Here, S C Q) is a closed set and B;, is a tubular neighbourhood of S of radius Ae.

The state space is given by pairs (B, S), with f : QO — R?>*? representing the
strain field. In order for the pair (B,S) to be admissible, some conditions are
required. Firstly, the support of curl  should be contained in S. Since curl B
represents the macroscopic Burgers’ vector, this condition grants that the defects
are contained in S. The second condition is called quantization of the averaged
Burger’s vector. If § is sufficiently regular, it can be written as

tdx = [ curlpdx € teB,
/arﬁx rcurﬁx Te

where I' is any sufficiently regular set whose boundary does not cross B).(S) and
t is the tangent vector to dI', suitably oriented. Taking oI to be a loop around a
defect, this condition implies that the Burgers’ vector associated with the defect
is a vector of the scaled lattice etB. In particular, the microscopical slip that it
represents must be in the admissible directions of the lattice and of a size that is a
multiple of the rescaled lattice spacing Te.

The energy of an admissible pair (5, S) has the form

1
E(.5) = ([, o WD+ L(Bi(S)),

€
where £ is the two-dimensional Lebesgue measure. The first term of the energy
is the elastic contribution, whereas the second, also called core energy, is related to
presence of the defects.

Some words should be spent on the scaling coefficient 1/e. When applying
incompatible boundary conditions, e.g., opposite rotations on the lateral sides of
the rectangle (), we expect the emergence of grains, that is, regions where the lattice
has different orientations. The energy needed for the formation of the grains should
be concentrated on the common interface—the grain boundary. When ¢ — 0, the
first term of the energy forces B to be close to the set of zeros of W, whereas the
second term should force the set S to approximate a one-dimensional interface, so
that £2(B¢(S)) ~ e. This heuristic argument has been recently made rigorous in
[FGS25], where the authors show the I'-convergence of E; to an interfacial energy,
ase — 0.

The simplest setting in which the emergence of a grain boundary is expected
is when the vertical sides of the rectangle () are rotated of opposite and small
angles -« (see Figure 1.3). When the lattice is the standard square lattice, a vertical
grain boundary should appear separating two regions where the lattice is almost
perfectly rotated. In the case of two non-symmetric rotations at the boundary, one
can simply rotate the body so that the rotations become symmetric, at the cost
of accounting for a rotated Bravais’ lattice. This is exactly the setting of [RS50],
where the authors formally derive a model for the creation of such interfaces, and
show the agreement of their prediction with experimental data. In particular, they
estimate an energy of order «|log «| for the emergence of a grain-boundary.

In [FGS25], the authors show the interfacial energy arising as the I'-limit of E,
satisfies the latter scaling in a.
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Figure 1.3: The rectangle () with the imposed boundary condition.

In Chapter 8, we give a simpler and more physical proof of the scaling predicted
by [RS50]. Precisely, we show that the minimum of the energy E. under opposite
and symmetric rotations of the vertical boundaries is bounded from above by
a term of order w|logwa|. The result holds for a general lattice and with any
orientation, covering also the case of non-symmetric boundary conditions. To
obtain this upper bound, we explicitly construct a field B simulating the grain
boundary, and we show that its energy is of order «|log «|.

As this result was already obtained in [FGS25, Section 5.2], we should remark
the main differences of our approaches. The strain field 8 we construct is piecewise
constant on a finite Cacciopoli’s partition of (), and thus is associated with a piece-
wise affine deformation at ¢ distance from the defects. Instead, the deformation
constructed in [FGS25] contains nonlinearities of the form x,/x7 and x7 /x», whose
physical meaning is unclear. In the region approximating the grain boundary, our
construction alternates in a periodic way dislocations simulating slips in the two
admissible directions of the lattice. The same strategy is used in [FGS25], albeit
with twice the number of dislocations associated with one of the two Burgers’
vector direction.

We believe that our approach is simpler, both in the construction and in the
resulting field, leading to greater possibilities of generalization.

The content of Chapter 8 is part of an ongoing project [ST25] in collaboration
with L. Scardia.
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2.1 Notation and general assumptions

Low dimensional bodies. Throughout the first part of the thesis, # > 0 denotes
the small dimension of a physical object. In the following, we treat two types of low
dimensional bodies: plates—a three-dimensional body with small thickness—and
strips, whose profile is fundamentally one-dimensional and that we represent as
two-dimensional rectangles with small width. In both cases, the geometry of the
reference configuration is flat, with no prior curvature imposed to the system. In
other words, there is no prestrain. Thus, when we consider plates, / represents
their thickness, whereas when we consider strips, h represents their width.

The letter S is used to denote the lower dimensional object that we use to
describe the limiting behaviour: the mid-plane for plates or the mid-line for strips.
We use (), to denote the reference configuration of the full dimensional object,
namely a cylinder with height 1 and base S. The set (), is always defined so that it
is symmetric with respect to the last variable: the small dimension. For example, a
plate with thickness his ), = S x (—h/2,h/2), with S a suitable subset of R2.

Elastic energy. A deformation of (), is described by a map w : ), — R sending
each point x € (), to its new position w(x). Its elastic energy is induced by a
density WV and is given by

/Q W(Vw)dx.

The elastic energy density is defined either on R3*? or R>*3, depending on whether
we are working with strips or plates, and takes values in [0, +-c0]. We assume that
W is a Borel measurable function such that

(RG) W is C?in a neighbourhood of the set Kyy := {W = 0},

27
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(FI) W is frame indifferent, i.e., W(RM) = W(M) for every R € SO(3) and for
every M € R¥3 or M € R3*2, according to the context.

While the first condition is needed from a mathematical standpoint, the second
one, usually known as frame indifference, is physically motivated and describes
the invariance of the energy with respect to rigid changes of the reference frame.

In Chapter 5, where we deal with strips, the energy WV has an explicit expres-
sion, satisfying both (RG)—(FI).

Dealing with plates, in Chapters 3 and 4, we allow for more general densities
W, defined on R3*3. In the latter case, the set of minimizers of the energy density
Kyy is made of a finite number of so-called wells, centred at Uj, ..., U; € R3*3,
Precisely,

1
Ky = | JSOo@)u;, (2.1)
i=1

where each set KlW = SO(3)U; is a well. Note that, by (FI), if U; € Kyy then
SO(3)U; C Kyy. We assume the matrices Uy, . .., U to be invertible, with positive
determinant, and such that U;" 1U]- ¢ SO(3) for every i # j. The last condition
grants that the wells K%,V are pairwise disjoint. By polar decomposition and (FI)
we can further assume without loss of generality Uj, ..., U; to be symmetric and
positive definite. Whenever there is no ambiguity between different elastic energy
densities, we write K in place of Kyy. We say that WV has a single-well structure
if | = 1. In that case, we assume that U; := Id. If /| > 1 we say that JV has a
multi-well structure.

Depending on the mathematical application we pursue, we assume differ-
ent growth behaviour of W outside Kjy. The precise hypotheses we need are
postponed to the corresponding chapters.

Rescaled variables and energy per unit volume. Since the reference configura-
tion (), depends on 4, it is usually preferred to rewrite the elastic energy in terms of
the rescaled reference configuration ) := ). To do so, we introduce the rescaled
deformation, that we denote by y and its rescaled gradient, that we write as V.
Precisely, y is given by the relation

y(x,z) = w(x, hz), (x,z) € Sx(—1/2,1/2) =S x I,
while the rescaled gradient is defined as
Viy = (Vay  10z9).
By a simple change of variable, the energy takes the form

h/Q W(Vyy)dx.

We denote by I, the energy per unit volume, that is the elastic energy divided by h

Ly) = [ W(Viy)dx.

With some abuse of language, we say that Ij, is the elastic energy.
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Matrices and vectors. Throughout the first part of the thesis, we use some matrix
notation that we introduce now. The vectors {ej} j=1,...,n, represent the standard
basis of R". We denote by Ry and RELT the spaces of symmetric and skew-
symmetric n X n matrices, respectively. We use Id3, to denote

10
Id3><2 =10 1
00

As it is customary, we define

SO(n) == {M € R": MM = Id and det(M) = 1},
O(n):={McR": M'M =1d}.

For n, k € IN with n > k, we write O(n, k) to denote
{M e R™ : MTM = Idi i}

Given a matrix M € R3*3 or M € R3*2, we write M’ to denote the top-left
2 x 2 submatrix. For a vector v € R3 we write ¢’ in place of (v1,v,). Similarly, we
write V' to denote (91 9;). When we are working with plates, i.e., S is a subset
of R?, we write V' in place of V even for functions defined on the mid-plane S, for
which V = V’, in order to stress the dimensionality of the gradient.

We use the super(sub)scripts to denote submatrices of M € RR3*3 in the follow-
ing way: every missing subscript index is a removed row while every missing
superscript index is a removed column. For example, M'? is the 3 x 2 submatrix
given by the first two columns of M while Mj , is the 2 x 3 submatrix given by the
first two rows of M.

Whenever we sum or multiply matrices and vectors with different dimension
we imply that the smaller one is naturally embedded in the bigger space by
adding zeros in the missing entries. For example, if M € R?*? and A € R3*? the
expression M + A means (M) + A where

1 1R2><2 s 1R3><3 M — <M 0)
. , 0 0 .

Given two vectors u € RF and v € R" we denote by u ® v € RF*" the matrix
(u®v); = uvj.

For a tensor B € R3*2%2 we define

3
det Z ]1118 ]12)

Big O and small o notation. We often employ the big-O and small-o notation.
Given two sequences (a;,), (b,) C R, recall that we write b, = O(a;,) whenever, at
least for h < 1, |by,| < Clay| for some constant C > 0 independent of /1, whereas
we write by, = o(ay,) whenever by, /a, — 0ash — 0.
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Given three sequences (a;), (by), (c;) C R, we write ¢, = O(ay, b,) meaning
that there exists a positive constant C > 0 independent of / such that |c¢;| <
C(lay| + |bp|). In particular, if |a;| < |by,| for h — 0, we have O(ay, by,) = O(by,).

Unless otherwise stated, when we consider a sequence of functions f; and
we write f, = O(ay) we are tacitly assuming that the constant C can be chosen
uniformly in x. Similarly, the convergence f;, /a; — 0 is implicitly assumed to be
uniform. If the functions f} are smooth, the constant C (and the convergence for
the small 0 notation) is assumed to be uniform in x and in its derivatives.

Isometric immersions. Suppose that S C RR? is an open set. We say that a
deformation w : S — RR? is an isometric immersion—with respect to the Euclidean
metric—if

Vo Viw=1d.

We denote by lesg (S;R®) the space of Sobolev isometric immersions, namely

22(c.R3Y . 22(6.R3Y - vy Ty — -
W2 (S;R%) = {y € W**(§R) : V'y' V'y =1d ae. in S}.
More generally, given a flat metric represented by a 2 x 2 positive-definite constant
matrix G, we say that w : S — R3 is an isometric immersion with respect to G if

Vw'Viw=g.
Analogously to the Euclidean case, we define

Wéﬁ,g(S; R3) = {y € W?2(S;R®) : V'y'V'y = Ga.e. inS}.
Dead loads and optimal rotations. In some of our results, we account for the
presence of some dead loads acting on the body. We use f, to denote a sequence
of loads acting on S, that is, a sequence of maps f, : S — R® representing the
density of some forces. The sequence (fj,) converges in some suitable sense—that
we specify later depending on the application we have in mind—to some limit
load f.

In various results of Chapters 3 and 4, we observe that the forces acting on S
select some preferred minimizers of VV. These special minimizers are the gener-
alization to our framework of the optimal rotations introduced in [MM21]. We
denote by M}, C Ky the set of maximizers of the functional

/
Fy: Ky — R, RUjH/fh-RUj (E) dx.
S

A maximizer of Fj, represents a trivial deformation with zero elastic energy that
minimizes the work done by the force f;,. Note that M, is not empty by compact-
ness of Kjy. Similarly, we define

M = argmaxF,
Ky

F(A) ::/D;f~A (’g) dx.

where
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Forj=1,...,1, we define the sets R and Rél as follows
RJ = argmax F(RUj),
ReSO(3)
RL i= argmax F, (RUj).
ReSO(3)

The elements of the sets R/ and RL are called optimal rotations with respect to the
well centred at U;. By (2.1), there are subsets of indices Ay, A C {1,...,1} such that

M, = RLU;
JEAR
jeA

One can prove that ’RL and R/ are closed, connected, boundaryless, and totally
geodesic submanifolds of SO(3). Indeed, the proof of [MM21, Proposition 4.1]
does not rely on the specific structure of F or Fj,, but only on their linearity. We
denote by TR/, and NR/; the tangent space and the normal space to R/ at the
point R, respectively. By [MM21, Proposition 4.1], we have

TRy = {RW e R¥%: W e RS, F(RWAU) =0}, (22)
NR = {RW € R¥3: W € Y3, RW L TR |. 23)

Similarly, we define TRL r and N RL R-

Recall that a geodesic in SO(3) is a curve of the form t — Re!", where R €
SO(3) and W € ngxei,. By [MM21, Lemma 4.4], every geodesic generating from a
point R € R/ in tangential direction, is contained in R/. Precisely,

ReR = R eRI VWeTRg VteR. (2.4)

The same result holds for RL

We can define the projection operators P/ and P;; of SO(3) onto R/ and Ri,
respectively. These projections have to be understood with respect to the intrinsic
distance of SO(3), i.e.,

distso(3) (R, Q) = min { W|: WeRY3, Q= ReW} . (2.5)
They are well-defined at least in a neighbourhood of R/ and R, respectively.
If W has a single-well structure, then the latter notation can be greatly simpli-

fied, as we have M = R! and M, = R,11 In the latter case we use the letter R to
denote both R! and M.

2.2 Mathematical preliminaries

For the sake of streamlining the exposition of the next chapters and give more
emphasis to the main arguments used therein, in this section we present some
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accessory results. Some of these are variants of well-known facts, others are tech-
nical statements, or slight generalization of them. The section is further divided in
three parts: the first is concerned with some simple results about the elastic energy
density W, the second contains some technical results on isometric immersions,
and the last regards optimal rotations.

We start by stating a non-standard version of the Poincaré’s inequality, the
Generalized Dominated Convergence Theorem and the Gronwall’s Lemma.

Theorem 2.2.1. Let p > 1and let O C R" be an open, bounded, and connected set with
Lipschitz boundary. Let E C Q) be a measurable set of positive Lebesgue measure. Then,
there is a constant Cp depending on |E| such that

lullr < Cp||Vullrr,  foreveryu € WYP(Q)s.t. u = 0on E.

A slightly more general result, from which Theorem 2.2.1 follows, is proved in
[Zie89, Theorem 4.4.2]. Note that the constant Cp may blow up as |E| — 0.

Theorem 2.2.2 (Generalized Dominated Convergence Theorem). Let (fx), (gx) C
LY(Q) be two sequences such that

(i) frx — f almost everywhere,
(i) gx — gin L1(Q),
(iii) |fx| < gx for every k € IN.

Then
I / dx = / dx.
fim o fedx = Jo o
A proof can be found, for example, in [EG15, Theorem 4, p.21].

Lemma 2.2.3 (Gronwall’s Lemma). Let 17 be a non-negative, absolutely continuous
function on [0, T|, such that for almost every t € [0, T]

I (t) < @(E)y(t) +9(t),
where ¢, p € L1(0, T) are non-negative. Then
o) !
n(t) <e (77(0) —|—/O lp(s)ds) Vtel[o,T],

where

C(t) = /Otgb(s) ds.

We refer to [Eval0, Appendix B.2] for a proof.

2.2.1 Results concerning the elastic energy density

In this section, W is defined on R3*® and satisfies the assumptions given in
Section 2.1. We prove some simple results concerning symmetry properties of its
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Hessian at minimizers. Moreover, we prove—under suitable growth conditions—
that the following function is well defined:

Qi R”?* R M m]iIg Qj(U]-_l(sym(M) +a®e;+e3®a))
ae

where
Qi(M) =V W(U))M: M,  j=1,...,],

and U; € Kyy are the centres of the wells. Indeed, to rigorously derive plate
models, a linearization around a minimizer of the energy density is needed, and
the quadratic forms Q; play a crucial role.

Lemma 2.2.4. Suppose that Id € Kyy. Then V2W(Id) is a fourth-order symmetric
tensor, namely

VIW(Id)M: M = V>W(Id) sym(M): sym(M) VM € R¥3,
Proof. Let A € R3*3 and define ¢(t) := e!4 for t € [—1,1]. Note that ¢(t) € SO(3)

skew
for every t € [0,1] so that in particular

W(pt) =0 Vte[-1,1]. (2.6)
Since ¢/ (t) = Aet? and ¢” (t) = A2et4, differentiating (2.6) we get
0= V2W(p(t))Vo(t): V() + VW(p(1)): V2p(t) Ve (-1,1). (27
Since ¢(0) = Id and VW(Id) = 0, from (2.7) we deduce that
0=V*W(Id)A: A VAERYS,

concluding the proof. O

As a simple consequence, we deduce some symmetry properties of V2 at
other minimizers.

Lemma 2.2.5. Suppose that U € Kyy. Let Q(M) := V>W(U)M: M. Then
Q(M) = Q(sym(MU " HU) = QU tsym(UM)) VM € R>>*3,

Proof. Define W(F) := W(FU). Clearly, W satisfies (RG) and (FI). Moreover,
Id € K5 Thus, by Lemma 2.2.4 we have

V2W(Id)M: M = V2W(Id) sym(M): sym(M).
By some simple computation we get V2 (Id)M: M = Q(MU). Hence,
Q(M) = QMU 'U) = Q(sym(MUH)U).

To conclude, observe that by definition of symmetric part and the symmetry of U
we have

Q(sym(MUU) = Q(sym(U~'UMUHU) = Q(U ™" sym(UM)).
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Lastly, we show some coercivity of V2)V at minimizers, provided WV satisfies
suitable growth conditions.

Lemma 2.2.6. Suppose that U € Kyy. Assume that VW satisfies the following growth
condition:

W(M) > Cdist*(M, Kyy), V M in a neighbourhood of Kyy. (2.8)
Then, there exists A > 0 such that for every M € R3x3
VW)U L sym(M): Ut sym(M) > A|sym(M)|%.

Proof. Without loss of generality, by (2.1) we can assume that U = U; for some
j=1,...,1. Hence, by (2.8) we have, for e < 1

W(U;j+el;'M) > C dist*(U; + el "M, Kyy) = Cdist* (U, + U "M, K})).
By the Taylor expansion of W at U; (recall that the energy density WV satisfies
(RG)), and by Lemma 2.2.5 we get

82V2W(U]-)Uj_1 sym(M): Uj_l sym(M) +o(e?) > C distz(ll]- + ellj_lM, K]W)

> Cdist*(Id +el; ' MU, ™, 50(3)) = Ce?| sym(U; ' MU )|* + o(¢?)
= C‘€2|LI]«*1 sym(M)u]fl|2 + 0(e2) > Ce?| sym(M)|? + o(€?).
Dividing by &2 and passing to the limit as ¢ — 0 we conclude. O

As a consequence of these properties, we can show that Q; is well defined
under the quadratic growth assumption (2.8).

Proposition 2.2.7. Assume that WV satisfies the growth condition (2.8). Then Q; is
well-defined. Moreover, the function
Li:Rym - R, M~ argmBin{Q]-(Uj_l(M +o®Re3+ez®0))}  (2.9)
vER:

is well-defined and linear.

Proof. The function is Q; is well-defined by the coercivity property proven in

Lemma 2.2.6. To show that L; is well defined and linear, note that L;(M) is the

unique vector x € IR? that solves the linear optimality conditions

CM+rx®e3+e3®@x):(ej@e3+e3®e;) =0, i=1,23,

where C is the fourth-order symmetric tensor representing the quadratic form

M — Q( u]flM). O
We conclude this section by stating a useful property of frame indifferent energy

densities.

Lemma 2.2.8. It holds that

W(M) =W (VMTM) VM € R with det(M) > 0.
Proof. By polar decomposition, every matrix M € R3*3 with det(M) > 0 can

be written as M = RV MTM, for some R € SO(3). Then, the result follows by
(FI). 0
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2.2.2 Results concerning isometries

In this section, we collect some statements regarding isometries. We recall and
refine some results contained in [FJM06, Section 8], allowing us to construct iso-
metric immersions with some prescribed data. Then, we report a density result
for smooth isometric immersions proved in [Hor11], and we show a new density
statement for solutions of the Monge—-Ampere equation that is of interest on its
own. In the last part, we state a result from [Fre+16] concerning the costruction of
isometric immersions of thin strips, whose restriction to the mid-line is known.

For the first part of the section, the set S represents the mid-plane of a plate,
thus we assume S C R? to be an open, bounded, and connected set with Lipschitz
boundary.

Consider a function v € W??(S). We would like to construct an isometric
immersion y € Wé’g (S;R?®) such that y - e3 = v. This is an important problem in
plate theory and in our I'-convergence setting, whose solution is crucial to the
construction of recovery sequences. The question can be equivalently rephrased as:
given an out-of-plane displacement v, is there an in-plane displacement u such that
(x' 4+ u,v) is an isometric immersion of S? In [FJM06, Section 8], the authors show
that a necessary and sufficient condition for the existence of u, or equivalently of
y, is that det((V')?v) = 0. For the convenience of the reader, we recall here the
aforementioned result.

Theorem 2.2.9. Suppose that S is simply connected. Let v € W??(S) N WV(S) such
that |V'v||p~ < 1. Then, there exists u € W>?(S; R?) such that

wr=(5) + () = (8)
)

is an isometric immersion if and only if det((V')?v) = 0. Moreover, if | V0|1~ < 1/2
the function u can be chosen such that

(V) 2ull 2 < ClIV' 0]l | (V)0 2, (2.10)
lullwez < CUV oIl [1(V)?2ll 2 + V01 72). (2.11)
The condition det((V’)?v) = 0 is a nonlinear elliptic PDE known as the Monge—
Ampere equation. We define the set of its strong solutions as
Aget = {U € W22(S): det((V')*0) =0 a.e. in S}.
The first result we prove is a slight generalization of Theorem 2.2.9, and it is
concerned with the regularity of u.

Theorem 2.2.10. Suppose that S is simply connected. Let v € W>*(S) and suppose that
|V'0|| L < 1. Then there is u € W>®(S;R?) such that the map

x! u(x’
- ()+(4)
is an isometric immersion if and only if v € Ager. Moreover, if | V'v||1» < 1/2, the

function u can be chosen such that

[ullyaes < CAIV") 0l [ V"0l + 1|V 0][0).- (2.12)
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Proof. The existence of u € W%2(S;R?) such that y is an isometric immersion is
proved in Theorem 2.2.9. We are left to show that u € W2*(S;R?) and that (2.12)
holds. In order to do so, we need to analyse the construction of 1. We borrow the
notation from the proof of Theorem 2.2.9 contained in [FJM06, Section 8]. Let

F=+vVId-V'v® V'y,

and

1
he = det(F)

Then, u is defined as u(x') = ¢(x') — x/, where ¢ € W??(S;R?) is such that
V¢ = eF and § € W1 (S) has zero mean and satisfies V'8 = hr. Here, ¢ stands
for the rotation matrix of angle 0

o cosf —sinf
© \sinf cos® )’

FT curl(F).

Note that

det(F) = \/det(Id—V’v®V’v) = \/1 —|V'v|2 > %

It is well-known that the matrix square root is differentiable and Lipschitz on the
set of matrices whose determinant is positive and bounded away from 0. Thus,
F € WY*(S;R?*2) and
[Fll= < €,
IV'Fllie < CII(V)?0 )l V0| 1.

It follows that hr € L®(S;R?) and
V'8l = [[hel| e < CI[(V)0]| || V0| .
Hence, we have

IV 2ulles = 1(V)?@ll < CUV6l|=[[Fllze + [VFl[z)
< (V)01 ]IV 0|1,
IV'ullze = V"¢ = 1d || < CIIF —1d || + [le —1d ||
< CIF —1d [z + |6l < C([[V'0|= + [ V'6]l1)
< UV ol V"2l + [ V72lIE),
where we have used the Poincaré-Wirtinger inequality on the term ||0||;~ and a
Taylor expansion of the matrix square root to treat the term F — Id (recall that the

matrix square root has bounded derivative). Since u is defined up to translation,
we conclude by applying the Poincaré-Wirtinger inequality. O

Since we are also interested in isometric immersions with a general constant
metric G € R**2, we would like to suitably extend the previous result. The
datum v—which is the out-of-plane displacement in the Euclidean case—has to be
changed to the displacement along a specific direction, related to the metric G.
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Theorem 2.2.11. Let U € R3*3 be a symmetric and positive definite matrix and let
G = (U?)'. Suppose that S is simply connected. Let v € W*2(S) be such that

U es] [ V'0G 12| < 1.
Then, there exists ¢ € W>2(S;1R?) such that the map

y(x') =ol tes + U (ﬁ) (2.13)

belongs to W22 .(S;R3) if and only if v € Ager. Moreover, if v satisfies the condition

iso,G
U el [V 2 < 5,
then ¢ can be chosen such that u := (U(¢ — x’,0))’ satisfies the following estimates:
(V) 2ullz < ClIV' 01 (V) ?0]l 12, (2.14)
[ullwzz < ClIV' 0|l [(V')?0]l 2 + C V|7 (2.15)
Finally, ifv € W%*(S), then u € W>*(S;R?) and the following inequality holds:
[ullaes < CAIV") 20l | V"0l + 1|V 0][0).- (2.16)
Proof. Observe that y of the form (2.13) satisfies V'yT V'y = G if and only if
V'¢TGV'p + U te3? Vo @ Vv = G.

Defining ¢ := G/2¢ and & := |U le3|v the previous equation is equivalent to
solve

(V/(ﬁg—l/2)T(vl¢;g—1/2) + (V’ﬁg_l/Z)T ® (V’ﬁg—1/2)T — Idz
for the unknown ¢. Define now & € W22(G1/2S;R3) given by 5(G1/%x") = 4(x').
Solving the above equation for ¢ is equivalent to solve
(V'$)IV'¢+ V50 V's=1d,,

for ¢ € W2(G1/23;R?). Thus, we can conclude by applying Theorem 2.2.9. Note
that the transformations v ~» ¥ ~+ 7 preserve the property of being a solution of
the Monge-Ampere equation, namely

det((V')20) = 0 <= det((V')%6) =0 <= det((V')%5) = 0.

Moreover, they preserve the boundedness of the gradient in the L norm. Finally,
define i1 := ¢ — x'. It is easy to show that

IV'ull 2 = ClIV'ill| 2,
[tllwr2 = Cllallyz,
IV'0]| 1 = C|| V'3[,
1(V")?0ll2 = CII(V")?3]| 2
Estimates (2.14)<(2.15) then follow from (2.10)+2.11). We are left to prove (2.16).

Note that it is sufficient to do the proof for i, so we can suppose U = Id. Then, the
result follows from Theorem 2.2.10. O



38 CHAPTER 2. NOTATION AND MATHEMATICAL PRELIMINARIES

The latter result allows us to construct isometric immersions of S into R for
the flat metric (U?)’, given a suitable displacement along U~ !e3 with respect to
the reference deformation x +— Ux. Note that U~ e; is perpendicular to both Ue;
and Ue,.

When constructing recovery sequences, it is sometimes useful to approximate
a Sobolev isometric immersion with a smooth one. We recall here a result proved
by Hornung in [Hor11] giving a sufficient condition to have density of smooth
isometric immersions in the space of Sobolev ones. We introduce a regularity
condition for the boundary of S, that corresponds to condition (*) in [Hor11].

there is a closed subset ¥ C 9S with H#!(X) = 0 such that

217
the outer unit normal 7i to S exists and is continuous on 9S\ . @17)

Theorem 2.2.12 (Hornung [Hor11]). Suppose that S satisfies condition (2.17). Then the
closure of the set
22(c.1R3 o0 (5. R3
Wo(S;R*) NC(S;R)
in W22(S;R%) is W22 (S; R?).
As a corollary, we state a density result for smooth solutions of the Monge—
Ampeére equation in the space of solutions with Sobolev regularity.

Corollary 2.2.13. Suppose that S is simply connected and satisfies (2.17). Then the closure

of
Adet nce (S_)

in W?2(S) is Aget-

Proof. We need to show that for every v € Age there is a sequence (v,,) C Aget N
C*(S) such that v, — v in W22(S). Suppose first that v € Agee N WH(S). Take
A € R such that || Vo[« < 1/A and define v* := Av. Clearly || Vo'||;~ < 1. By
Theorem 2.2.9 there is ¢, € W??(S;R?) such that

y(x') == v'es + (4:))‘)

satisfies V'y'V'y = Id. By Theorem 2.2.12, there is a sequence of isometric
immersions
() © WL (SR N C¥(SRY)

such that y, — y in W>?(S;R3). Defining v, := (1/A)y, - e3 we have v, — v in
W?22(S). Moreover, by Theorem 2.2.9, we deduce that v, € Agee N C®(S).

We move now to the general case of v € Age;. By [FJMO06, Theorem 10], there
is a sequence vy € Ager N WV (S) such that vy — v in W22, Then, by a standard
diagonal argument, we conclude. O

We present now a density results in L? for Sobolev solutions of the Monge-
Ampere equation, which is of interest in its own right. The proof relies on the
well-known Universal Approximation Theorem for Neural Networks (see [Cyb89;
CD89)).
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Theorem 2.2.14. The set span Aqe is dense in L>(S).

1
Proof. Step 1. Let o(x) := =l We show that ¢ is discriminatory, i.e., the only

signed bounded regular Borel measure y on S such that
/_U(yTx +0)du(x) =0 VyeR?VHecR (2.18)
JS

isu=0.
Let u be such that (2.18) holds. We argue as in [Cyb89, Lemma 1]. Let y € R?,
A0,k € R, and define

o (x) == oAy x +0) + k).

Let
1 ifyTx+6 >0,
¢oF(x) =10 if yTx+0 <0,
ok) ifyTx+0=0.

Clearly, X — ¢* pointwise as A — +o0. Moreovet, ||cf[|co < 1 uniformly in A.
Hence, by (2.18) and dominated convergence

0= /gaﬁ du — /g(l)kdy = c(Opu(Ilyp) + u(Hys) Yy €R2VO,kER,
(2.19)
where

I, p:={x€S: yTx 46 =0},

Hyp:={xeS:y'x+0>0}.
Passing to the limit as k — +o0 in (2.19), we deduce that

u(Mye) +u(Hyp) =0 VyeR?,VOER.
Similarly, letting k — —oo we get
u(Hyp) =0 VyeR*,VOER.
Fix y € R? and define _
Foh) = [ h(y"x)dp(),
for every bounded Borel function / : R — R. Let § € R. Then,
Fy(X[—0,400)) = n(I1y0) + u(Hyp) =0,

where X|_g | ) is the indicator function of [—6, 4+-c0). Similarly, F, (X (_g,+)) = 0
By the linearity of F;,, we deduce that F; is zero on the indicator function of every
interval. By approximation, Fy () = 0 for every continuous and bounded function
h:R — Rand for every y € R2. In particular,

A = [ ap(x) = [ (cos(eTx) +isin(&"x)) du(x)
= Fz(cos(x)) 4 iFz(sin(x)) = 0,
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where i is the Fourier’s transform of y (see also Section 6.2 for a short introduction
of the Fourier’s Transform). Since ji = 0, it follows that y = 0.
Step 2. Let

Y= {x»—>a(yTx+9): RS ]R,yEIRz}.
We show that span . is dense in C°(S) with respect to the C° norm. Suppose by
contradiction that R = spanX ¢ CY(S). Then, by the Hahn-Banach Theorem,

there is L € (C%(S))* such that L # 0 and L(R) = 0. By the Riesz Representation
Theorem, there is a signed bounded regular Borel measure y # 0 on S such that

L(h) :/S_hdy Vh e CO(3).

Since ¢ is discriminatory by Step 1, we have the desired contradiction.
Step 3. To conclude it is sufficient to show that & C Age. Letd € Rand y € R?.
We have )
V2o (yTx+6) = o’ (y"x + 0 ( 1 WZ) :
<0y ) =0y o 2
Thus, det(V2o(yTx + 0)) = 0, concluding the proof. O

To conclude the section, we report a result proved in [Fre+16], regarding the con-
struction of isometric immersions of narrow strips. More precisely, the following
Theorem allows us—under suitable hypotheses—to extend a second fundamental
form defined on the mid-line to a narrow strip, in such a way that it is still the
second fundamental form of an isometric immersion. For this last part, S := (0, L),
sothat Q, = (0,L) x (—=h/2,h/2).

Theorem 2.2.15. Let p > 0 and let p € C'([—p, L + p; R?) be such that |p| = 1 and
p-e1 # 0on [—p, L+ p]. Then, there exists 1 > 0 and O C R? a neighbourhood of
[0, L] x {0} such that the map

®:[—p,L+p] x(—1n/2,1/2) — R?, D(x1,x2) == x1€1 + xsz‘(xl)

is a bi-Lipschitz homeomorphism onto O. In particular, there exists € > 0, depending
solely on p, such that Q)¢ C O.

Consider now y € W>2(0,L;R3) and dy € W'2(0,L;R®) such that, defining
dy = 01y, it holds:

(i) |d1| = |d2| = 1 almost everywhere in (0, L),
(i) dq -dy = 01dy - dy = 0 almost everywhere in (0,L).
Assume the exists A € L?(0, L) such that M := Ap ® p satisfies
My = 01dy - d3,
Mg = d1d, - d3,
where d3 := dy A dy. For (x1,x2) € ®1(Q), define u by the relation
w(P(x1,%2)) = y(x1) +x2 (di(x1)  da(x1)) p(x1).
Then,
u € W22 Qg R®) N W (O R?)

and satisfies for almost every x1 € (0, L)
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(@) u(x1,0) =y(x1),
(b) Vu(P(x1,x2)) = di(x1) ®eq +da(x1) @ey,

() 0;ju(x1,0) - v(x1,0) = M;j(x1) = A(x1)pi(x1)pj(x1) for i,j = 1, 2, where
V= 01U A dyu.

For a proof, we refer to [Fre+16, Lemma 12 and Proposition 13].

2.2.3 Fine properties of optimal rotations

In this section, we recall some properties of optimal rotations (see Section 2.1 for
their definition), and we further analyse their structure in our specific setting.
The first part is devoted to the projection operator as defined in Section 2.1,

and its results are used in Chapter 3. We show that, under suitable hypotheses, P]i
is well-defined, at least for 1 < 1, along sequences of rotations converging to an
optimal one.

In the second part, we restrict our attention to the single-well case, and we
investigate the consequences of a compatibility condition between f and R that is
important in Chapter 4. In particular, in this case we give an explicit characteriza-
tion of the tangent and normal space to R.

Throughout this section, S represents the mid-plane of a plate, so that S C R?
is an open, bounded, and connected set with Lipschitz boundary.

For the first part of this section, let (f;,) C L?(S;R3) be a sequence of loads
such that k=7 f}, — f in L2(S;R3) for some p > 0. Suppose that for every i > 0

/th dx' = 0.

The first Lemma is an easy I'-convergence result, whose proof is omitted. We recall
that Fj, and F are defined as in Section 2.1.

Lemma 2.2.16. The sequence of functionals —h~" Fj, I'-converges to —F. In particular,
given a sequence (RyUy, ) such that R,Uy, € My, for every h, up to a subsequence we
have Rhukh — Ru]' e M.

Lemma 2.2.17. Letj € {1,...,1}. Suppose that dim RL — dim RJ. Let (R;) C SO(3)
such that Ry, € RL for every hand let (W) C R3S be a sequence such that

skew
(@) RyWj € NR) z,,
(b) |Wy,| = 1 for every h.
Then, up to a subsequence, we have R,W);, — RW, where R € RJ, W € ngxe%v, [W| =1,
and RW € NR.

Proof. Up to subsequences, we have that R;, — R and W, —+ W with R € SO(3),
W € R¥3  and |W| = 1. By Lemma 2.2.16 we have that R € R/, thus we just

skew” . i .
need to prove that RW € N R]R Let m := dim R/. By hypothesis, m = dim R;l for
h < 1. Consider an orthonormal basis

{RW,, ..., RyWiy
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of the tangent space TR];; R,- Then, up to a subsequence, we have R, W,i — RW! for

some W € R3x3

kew" Clearly the matrices RW! ..., RW™ are orthonormal. Moreover,
since

0=h PF,(R,(W})*;) — F(RIW'?;)  Vi=1,...,m

it follows that
{RW'U, ..., RW™U;}

is an orthonormal basis of TR%.

Consider now a matrix M € R‘:lfe?’w such that RM € TR%. Then, we can

write RM = Y7, A;RW' for some Ay,..., A, € R. Define My, :== Y1, AiW;l. By
construction, we have R, M, — RM. Moreover, R, M, is tangent to R{l at the point
R}, so that

0= RhWh : Rth — RW : RM.

Since M is arbitrary, this concludes the proof. O

Remark 2.2.18. Lemma 2.2.17 proves also that a sequence of tangent matrices to

R;l at a point R, converges to a tangent matrix to R/ at the point R, where R is the
limit of Ry,.

Proposition 2.2.19. Let j € {1,...,1}. Suppose that dim Rz — dim RJ. Let
R/ :={R e R:3(R,) CSO(3)s.t Ry € R{ifor every h > 0and R, — R}.
Then R} = RJ.
Proof. We show that R/ is the image of T7€§a through the map
TR, —SO(3),  RW s Re",

in a neighbourhood of R. In particular, this proves that RJ is an embedded

submanifold of R/ and that the tangent spaces coincide, concluding the proof.
Let R € RJ. There exists a sequence (R;) C SO(3) such that R, € RJ, for

every h1and R, — R. For h < 1, take an orthonormal basis {R,W}., ..., R,W"} of

TR{l R, Where m := dim RL = dim R/. Then R, W;; — RW! and since

0= 5 Fu(ROWE L) — E(ROW)2L),

the set {RW!,..., RW™} is an orthonormal basis of TRJI'{. Now pick W € T’R{Q. By

the convergence of the basis we can construct a sequence (W),) C ]Rglfe%v such that

Wy, = W and R;W), € TR;; for every h < 1. By (2.4), we have Ry € RL Thus,
passing to the limit, we get by Lemma 2.2.16 that Re"™ € RJ, that is, by definition
Re™ € RI. O

The above results grant the well-posedness of the projection.
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Proposition 2.2.20. Let (R;,) C SO(3) be a sequence such that Ry, — R and R € R
for some j € {1,...,1}. Suppose that dim R}, — dim RJ. Then P|(Ry,) is well-defined
forh < 1.

Proof. 1t is sufficient to prove that distgo(s) (Rp, RL) — 0. By Proposition 2.2.19,

there exists a sequence of rotations Ry, such that R, € R}, for every i and Rj, — R.
Since

distso(3)(Q, Q) = 1Q" - Q|+ 0(]Q" - Q)
for every Q, Q" € SO(3), we have
distso(3) (Rp, Rj}) < distso ) (Ru, Ry) = |Ry — Ry + O(|Ry — Ry |*) — 0.
O

We move now to the second part of the section, and we restrict our attention to
the single-well case (i.e., | := 1, Uj := Id so that Ky, = SO(3)). We use the reduced
notation R to denote both M and R'.

Consider a non-zero force f € L?(S;R?) and suppose that

héfdﬂ::a

We start with some result regarding the dimension of R. Firstly, we recall the
characterization contained in [MM21, Proposition 6.2].

Proposition 2.2.21. Let L : SO(3) — R be a linear map and let Ry be the set of its
maximizers. Suppose that Id € Ry. With a small abuse of notation, let L be the 3 x 3
matrix representing the linear function L. Either we have Ry = {Id} or

(i) Ry =SO(3), ifand only if L = 0,

(ii) Ry is isometric to the real projective plane P, (IR), if and only if the eigenvalues of
Larea, a, —a for some a > 0,

(iii) Ry is a single closed geodesic, if and only if the eigenvalues of L are b, a, —a for
someb >a > 0.

We show that, in our setting, case (ii) is not admissible.
Lemma 2.2.22. The dimension of R is not 2.
Proof. Let R € R. Define

Hm_/fRA” m—/ﬂfolm
=/ 0 = I 0 .
Similarly, define

R := argmax F(R).
ReSO(3)

Note that R = R - R so it is enough to prove that dim R # 2. Clearly Id € R,
so we can use the classification of Proposition 2.2.21. Since F and F are linear on
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the space of 3 x 3 matrices, we can represent them by 3 x 3 matrices, that we still
denote, with a slight abuse of notation, bz F and F. By Proposition 2.2.21, R is
two-dimensional when the eigenvalues of F are of the form 4,4, —a for some a > 0.
Note first of all that N
F:A=F:RA VAecR¥S,
so that F = RTF. Moreover,
Fs=F:EB3=F(EB®) =0, i=12,3,

where E is the matrix such that E;CJ m = Okiomj and J;; is the usual Kronecker’s

symbol. It follows that det(F) = det(F) = 0 and 0is an eigenvalue of F, concluding
the proof. O

In this part of the section, we are mainly interested in the consequences of the
compatibility condition

RTf.es=0 VYReR. Q)
Condition (C) plays an important role in Chapter 4.

Remark 2.2.23. If (C)is in force, then we also have dim R # 3, thus R is either
a singleton or a closed geodesic. However, as showed in [MM21], we can have
non-zero forces for which R = SO(3). As an example consider f := (1 —3/2|x|)e;
acting on S := Bj. Then

X 1 on 3 rcos 6
F(R) = Blf(x)‘R<0)dxl—/o/o 7(1—2r>e1-R rsinf | dédr = 0.

0
In particular R = SO(3). In this case, (C) does not hold.

The set of rotations is not linear. However, the 2-dimensional structure of the
integral that defines F gives us the freedom to perform some change of sign to
the columns of a rotation while keeping the sign of its determinant. A few simple
results follow from this observation.

Lemma 2.2.24. If (C) holds, then

max F(R) > 0.
ReSO(3)
Otherwise,
max F(R) > 0.
ReSO(3)
Proof. Assume (C) and suppose by contradiction that F(R) < 0 for any rotation
R € SO(3). By (C) we have R # SO(3), hence the map F can not vanish on the
whole SO(3). Thus, there is a rotation R such that F(R) < 0. Now consider the
matrix
R:=(-R! —-R?> R%).

Note that R € SO(3) and F(R) = —F(R) > 0. This gives the desired contradiction.
The same argument applies to the second part of the statement. O
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Differentiating the map t + F(Re!") and evaluating it at t = 0 we obtain

F(RW) =0, F(RW?) <0 VReR,VWecR? (2.20)

skew "

Consider now R € R and the skew-symmetric matrix

0 10
W=|[-1 0 0].
0 0 O
Since F(RW) = 0, we get

X2 0
/Sf-R(g) dx :/Sf~R(38) dx’.

For a given R € R we then define
X1
a(R) = / FR| 0| dx, (2.21)
s 0
0
b(R) = /S FR x| ax, (2.22)
0

0

x2
c(R) ::/Sf-R 981 dx _/sz(g) dx. (2.23)

Note that by Lemma 2.2.24 we have that a(R) + b(R) = F(R) > 0. Moreover, a(R)
and b(R) can not be negative, as proved in the following lemma. In particular,
when (C) holds, a(R) and b(R) cannot be both zero by Lemma 2.2.24.

Lemma 2.2.25. It holds that a(R),b(R) > 0 for any R € R.

Proof. Suppose by contradiction that a(R) < 0 for some R € R. By Lemma 2.2.24
we have b(R) = F(R) — a(R) > 0. Consider the rotation

R:=(—R' R?> -—R®) €50(3).

Then F(R) > F(R) = —a(R) +b(R) > a(R) + b(R) = F(R), which gives a
contradiction. A similar proof can be done for b(R). O

We can now give an explicit characterization of the tangent space TR in terms
of the quantities a(R), b(R) and ¢(R).

Proposition 2.2.26. Assume (C)and suppose that dimR = 1. Let R € R. Then
a(R)b(R) — c2(R) = 0.

Moreover,
TRr={W e ]R3><3 Wi =0, Wi = —@Wzg lfﬂ(R) 7é 0
skew 4 a(R) 4
TRR =W e R¥3 : Wy, =0, Wy = —@w13 if b(R) # 0.
skew ’ b(R)
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Proof. By definition, the tangent space to R at R is the set of zeros of the map

We IRzlfe“:’N s F(RW?2). For a general skew-symmetric matrix W, we have

(WZ)/ _ (lez + W123 W13W23 > )
WisWos W2, + W2

Hence, by (C) we have
F(RW?) = — (W3, + W)a(R) — 2Wi3Wazc(R) — (W%, + Wi3)b(R)

This expression can be considered as a quadratic form g : R®> — R computed at
the vector (Wyp, Wi3, Wa3). We can identify g with a symmetric matrix and study

its sign. We have
a(R)+b(R) 0 0
qg=- ( 0 a(R) c(R)) ,

0 c¢(R) b(R)

so by Lemma 2.2.24-2.2.25 the sign of g depends solely on the minor a(R)b(R) —
c2(R). If a(R)b(R) — c2(R) > 0, the only zero of q is at 0, contradicting the hy-
pothesis on the dimension of R. If a(R)b(R) — c*(R) < 0, the set of zeros of g
contains two lines that span a subset of dimension 2 in R?, contradicting again the
assumption dim R = 1. Therefore, it must hold that a(R)b(R) — c?>(R) = 0. In this
case, we have

2
(W) = ~WhHE(R) - <W13\/ﬂ(R)+W23 (’2)) ifa(R) £ 0,

2
c(R .
(W) = ~WLE(R) — <W23 b(R) + Wiz 2(1){)> if b(R) # 0,
concluding the characterization of the tangent space by Lemma 2.2.24. O
Corollary 2.2.27. Assume (C), suppose that dim R = 1, and let R € R. Then

NRR = {W ERYZ : Wy = ZEI;%WB} ifa(R) # 0,

NRg = {w ERYS - Wig = ZE% w23} if b(R) # 0.




I'-convergence of a
singularly perturbed
multi-well energies

3.1 Assumptions and main results

In this chapter, we assume S C R2 to be an open, bounded, and connected set
with Lipschitz boundary, representing the mid-plane of a plate. The elastic energy
density W is defined on IR3*3. Moreover, we assume that

W(M) > Cfy(dist(M,K)), M eR>3, (3.1)

where f; = t2 At7and g € [0,2]. This implies in particular the growth condition
(2.8). Note that far from K (see Section 2.1 for the definition of K) the energy
density may even have sublinear growth. We denote with the greek letter a
a scaling exponent in [2,+0), and we set v = a/2. We choose p > 1 and
1: (0,400) — (0, +00) such that for some constant C > 0:

(P1) 5(h) > ChS5 for every h > 0,

®2) (K" P S 0ash 0,
(P3) p>6/5ifqg <2

Conditions (P1) and (P3) ensure that the penalty term is strong enough to provide
suitable compactness estimates (see Proposition 3.2.1) whereas condition (P2)
guarantees that the penalty term is negligible at the limit. Note that (P1)—(P3)
are compatible, since for every « > 2 we have 1 — (1 — p/2) < a/3 for p large
enough.

The symbol V2y denotes the rescaled Hessian of y, that is simply V;,(V,y). We
set

W}, (QR?) = {y € WY (O;R?): V2y € LP(Q;R3X3X3)},

47
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and we define the a-rescaled energy Ef : W'2(Q;IR?) — R as follows:

1 ;7P(h)/2p . A
Ef (y) ::{ha ./QW(Vhy)dx+ I (Q|Vhy| dx ify € Wy ((G;R%),

400 otherwise.

The main objective of this chapter is to extend the rigorous derivation of the
hierarchy of plate models obtained by Friesecke, James, and Miiller in [FJMO02;
FJMO06] for a single-well energy to the perturbed multi-well case. In order to do so,
we need to introduce the limiting models centred at a well K;.

The Kirchhoff’s regime « = 2

For & = 2, we prove the I'-convergence of Ej to the Kirchhoff’s functional

(3.2)

l 3 . T 2,2 . 3
Ef(y) = { 24 /s Qi(Vy Vvdx  y € Wigg, (SR,
Foo otherwise,

where G; := (U].z)’ and v is the unique vector such that (V'y v) U]fl € S0(3) a.e.
in S (whose existence is granted by Lemma 3.2.8). The I'-convergence result is
stated in the following theorem.

Theorem 3.1.1 (I'-convergence (¢« = 2)). Suppose that S satisfies (2.17).

(i) For any sequence (y,) C W'2(Q; R®) that satisfies Ex(y;,) < C for every h > 0
there exist y € W?2(S;R®) and j € {1,...,1} such that:

(@) V'yTV'y = (sz)’ or equivalently y € W>%, (S;R3),

is0,G i

(b) up to a nonrelabelled subsequence, Vyy, — (V'y v) in L2((Q;R3*3),
where v is the unique vector such that (V'y  v) U;l € SO(3) a.e.

(i) For any sequence (y;,) C WY 2(Q;R3) as in (i) it holds

lim inf E3 (y;,) > EX ().
h—0

(iii) Forany y € W, (S;IR3), there exists a sequence (y,) C WY2(Q;R3) such that

is0,G i

(b) holds true and
1. 2 _— K .
hlIIOl Eh (yh) E] (y)
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The Von Karman's regime & > 2

When a > 2, the limiting models are expressed in terms of # and v, the limits of
the rescaled in-plane and out-of-plane averaged displacements around a well K;,
called u;, and vy, respectively. They are defined as follows:

) 2 / =y 2-29) (@n(X') - Ujer
up: S—> R x' — min {h Jh } (wh(x’) Uiey)’ (3.3)

v,: S — R X = Y wp () - Ujes, (3.4)

where we recall that y := «/2 and

. 3 x!
wp: S —> R, x’r—>/l(yh—llj (hX3>> dxs.

Observe that uj and vy, are the components of the averaged displacement wy, in
the basis given by {U]fiei: i = 1,2,3}. This may not look as a natural choice,
since a basis of tangent vectors to the embedded midplane U;(S x {0}) is given by
{Uje1, Ujez } and the normal direction is given by Uj_leg. However, since {Uj_lel- :
i =1,2,3} is the dual basis of {Ujei :i = 1,2,3}, this alternative simplifies both
the statement and the computations, and gives a completely equivalent result (see
Remark 3.2.12).

When 2 < a < 4, we retrieve the I'-convergence to the constrained Von
Kérman’'s functional, namely,

1 7 - . 4
ESVK(9) := { 24 LUV Poydxifoe A,
] T oo

otherwise,

where

Alin . {U € W?2(S) : 3u € W (S;R?)

iso,j "
st. Viul +V'u+ |U]«_1e3|2V’v ®@V'o = 0}.
As in the single-well case, the constraint
V'ul +V'u+ |u]f1e3|2v’v @V'o=0 (3.5)

means that u and v satisfy a matching isometry condition up to the second or-
der; however, the metric now depends on the well, and it is not necessarily the
Euclidean one. More precisely, if one defines for e > 0

x/

_ _ u
Ye = U] <0) -l—EU]- 1€3U+€2uj 1 (0) ,

then (3.5)is equivalent to V'y! V'y. = (U]-z)’ + O(&3). In the literature, y, is called
a geometrically linearized isometry. If S is simply connected, for a given v there
exists u solving (3.5) if and only if v € Aget, as we show in the next proposition.
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Proposition 3.1.2. Assume that S is simply connected. Let v € W2(S). There exists
u € WY2(S;R?) solving equation (3.5)if and only if v € Aget.

Proof. We follow [FJMO06, Proposition 9]. Suppose first that U; := Id and define

g = —%V’v@V'v.

With some simple computations it is possible to prove that the relation

922811 + 011822 — 2012812 = det((V')*0)
holds in the sense of distributions. If we show that g is the symmetric gradient of a
W12 map if and only if
022811 + 011822 — 2012812 = 0, (3.6)

the proof is concluded. Suppose first that ¢ = sym(V’u) for some u € W'2(S;R?).
Then, in the sense of distributions,

022811 + 011822 — 2012812 = 22141 + O112Up — 012(0qUp + doup) = 0.

Assume now that g satisfies (3.6). We look for u € W'2(S;R?) such that

d1u1 = g11,
drliy = g2, (3.7)
%(alu2 +0ou1) = 812 = §21-

Note that the last equation can be equivalently rewritten as

1
d1Uy = Qo1 + 5 curl(u),

1
82M1 =812 — E Curl(u).

Thus, solving (3.7) is equivalent to solve

_ [ su  gu—f
i +f gm ) (3.8)
f= %curl(u),

for u € W'2(S;R?) and f € L2(S). We show now that the two equation can be
uncoupled. Taking the distributional gradient of the last equation, we get

1 (011up — a12M1> <31g1z - a25’11)
Vf== = . 3.9
f 2 (azluz — dopug 01822 — 92812 (39)

Recall that a vector-valued (or matrix-valued) distribution on a simply connected
set is a distributional gradient if and only if its curl is zero (see also Section 6.5).
Since

curl <31812 — 02811

=d +0 —20 =0,
91920 — azgu) 22811 11822 12812
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equation (3.9) can be solved for f € L?(S). Lastly, since

L1 812 — f> _
1 =0,
o <821 +f &

for the same reason the first equation in (3.8) can be solved for u € W12(S;R?),
concluding the proof. If U; # 1d, it is sufficient to note that (3.5) can be rewritten as
m(v’ﬂ +V'u)+ Vo Ve=Vil +Vi+ Voo V=0,

. 63

]
where i == |U].*163|’2u. O

The case & = 4 corresponds to the Von Karman’s model, that is,

1 -
E]VK(“/ v) = 2 /S Q]'((V/)ZZJ) dx
1 -
+3 /S Qi(V'ul + V'u+ |uj—1e3|2v’v ® V'v) dx,
forv € W22(S) and u € W2(S;R?).

Lastly, if « > 4, we prove the I'-convergence to the linearized Von Karman’s
model

1 - 1 -
ELVKlzzi/l "2 7/,/T /
() Y SQJ((V)v)dx+8 SQ](Vu + V'u)dx,
for v € W22(S) and u € W'2(S;R?). The following theorem summarizes these
I'-convergence results.
Theorem 3.1.3 (I'-convergence (¢ > 2)). Suppose & > 2.

(i) For any sequence (y,) C WY2(Q;IR®) that satisfies EX(yy,) < C for every h > 0
there exist an index j € {1,...,1}, two sequences (R;,) C SO(3), (c;) C R,
and two maps v € W?%(S),u € WV2(S;R?) such that, up to a subsequence, the
following convergences hold:

(@) uy, — uin W2(S;R?),
(b) v, — vin W2(S),

where uy, and vy, are, respectively, the in-plane and out-of-plane displacements
around the well K; defined as in (3.3)~3.4) for the roto-translated deformation

Jn = Riyn +cn-
Moreover, if 2 < « < 4, then

Vul +V'u+ |U]f1e3|2V’v ®@V'v = 0.

(ii) For any sequence (y;) C WV2(Q;R3) as in (i)
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(@) if2 < a < 4,then hin 151f EX(yy) > E]CVK(U),
H
(b) if & = 4, then Liminf Ej () > EY®(u,0),
h—0

(c) ifa >4, then ligLiglez(yh) > EjLVK(u,v).

(iii) Suppose that 2 < o < 4 and that S is simply connected and satisfies (2.17). For any
choiceof j € {1,...,1} and v € A};‘(‘),j, there exists a sequence (y;,) C WV2(Q;R3)
such that

(@) vy, — vin WY2(S), where vy, is defined as in (3.4),
(b) lim Efj(y4) = EV¥(0).
h—0 ]

(iv) Forany choiceof j € {1,...,1}, u € WY2(S;R?), and v € W22(S) there exists a
sequence (y,) C WY2(Q;R3) such that, defining uy,, vy, as in (3.3)~(3.4),
(@) v, — vin WH2(S),
(b) u, — uin W'2(S;R?),
; « — rVK if v —
(c) lim Efi(y) = Ej™(u,0) iffa = 4,
(d) lim Ef () = EVR(u,0) ifa > 4.
h—0 ]

Remark 3.1.4. In the proof of Theorem 3.1.3—(iii) we cannot use the truncation
argument of [FIM02; FJM06]. Indeed, the penalty term in the energy requires
higher regularity. To overcome this issue we suppose that S satisfies (2.17), so that
we can apply the density result by Hornung recalled in Theorem 2.2.12.

Remark 3.1.5. In the single-well case, thatis | := 1 and U := Id, Theorems 3.1.1
and 3.1.3 hold also for 7(h) = 0, namely, without penalty term. Indeed, this is
precisely the setting of [FJM02; FJM06]. Moreover, if instead of rescaling by h* we
do it by a generic infinitesimal sequence D;, — 0, we obtain the same hierarchy of
T-limits, depending on the asymptotic behaviour of D, /h? and Dy, /h*.

Convergence of minimizers in the presence of dead loads

External forces can be included in the previous analysis. For this part, we assume
g > 1, excluding sublinear and linear growth of W at infinity, and we study the
convergence of minimizers of the rescaled total energy

1
i WRORY) = RU {0}, Jin) = B ) — g [ fu- vnd,
where fj,: S — R? is a sequence of dead loads that satisfies
1 . /
mﬁﬂ%fmm@m% (3.10)

Here ¢’ is the conjugate exponent of 4. Note that g/ > 2, so that the strong
convergence of the forces holds also in L%(S;R3). We assume the forces to be
mean-free, i.e.,

Aﬁwzm, 3.11)

otherwise the infimum of Jj} is —oo. We prove the following result.
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Theorem 3.1.6. Suppose that S satisfies (2.17)and q > 1. Let (y;,) C WY2(Q;R3) bea
sequence of deformations that are quasi-minimizers for J2, i.e.,

limsup (J; (yx) — inf ;) = 0.
h—0

Then, E2(yy) < C for every h > 0 and there exist j € {1,...,1} and y € W2 (S;R®)

iso,gj
such that, up to subsequences, yj, — y in WY?(Q; R®) and (j,y) minimizes

Ky = EX(y) — [ f-
W) = Efw) - [ £-vdx,
over the set
{Goy) e {1,..., 1} x W2(S;RY): VYT V'y = (U7F)'}.

For the case a > 2, optimal rotations play an important role (see Section 2.1 for
the definition of optimal rotations and the related notation). We assume that the
forces fj, are such that

(FY A, =Aforh <1,
(F?) dim RL — dim R/ for any j € A.

Note that in general one only has A, € A and limsup,,_,, dim RL < dim R;d, as
shown in the following example. The failure of (F')~(F?) may happen, for instance,
when the direction along which the force acts is slightly perturbed.

Example 3.1.7. Leta > 2 and set S := (—1/2,1/2)2. Suppose that [ := 2 and let

1 00
U; :=1d, =0 2 0].
0 01

We consider the following sequence of forces
fh (X/) = hAH_l [X1€3 + ]’lX2€2].

Note that the sequence f; is mean-free by symmetry. Then, with some simple
computation one has that

B+l

Fy(RU;) = ?(RM +hRyp),
-l

F,(RUp) = ﬁ(Rm + 2hRy).

It follows that R} = R2 are singletons given by the matrix

0 01
01 0],
1 00
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and that Ay, = {2}. The limit force f is given by f(x’) = xje3. Hence,

1
F(RU;) = F(RUp) = ER31’

Thus,
R!'=R?*={RcSO(3): Rz =1},
and dim R! = dim R? = 1. Moreover, A = {1,2}.
Under the assumptions (F1)—(F?), the following result holds.

Theorem 3.1.8. Let &« > 2 and g > 1. Assume (F')—(F?). Suppose that (y,) C
W12(0); R®) is a sequence of deformations that are quasi-minimizers for |, i.e.,

limsup (Jj: () — infJj;) = 0.
h—0

Then, Ef(yy) < C and there exist (R,) C SO(3), (cy) C R, u € W (S;R?), v €
W22(S),and j € {1,...,1} such that j € A and, up to subsequences,

(i) Ry — Rwith RU; € M,
(i) uy — uin W2(Q;R?),
(iil) vy, — vin W2(Q),
where uy, vy, are defined as in (3.3)—(3.4)fqr In = Rzyh + ¢p,. In addition, there is
W e IREESN such that [W| =1, RW € NR]R, and
w3 =M(R, — PL(R,)) — BRW,
for some B > 0. Lastly,

(@) if2 < a < 4and S is a simply connected set that satisfies (2.17), then (j, v, R, BW)
minimizes the functional

JEVK (0, R, W) == ESVX (o) - /S f - RU; 'esvdx — F(RW2LL)
over all the admissible quadruplets (j,v, R, W), that is, j € A and (v,R,W) €
Alin s Rj % Rg’lfeiv such that W € NRY,,

is0,]

(b) ifa =4, then (j,u,v, R, BW) minimizes the functional
]]VK(u/ 0, RI W) = E]yK(u, U) - / f . Ru]-_1€37] dx — F(RWZUJ)
S

over all the admissible quintuplet (j,u,v, R, W), that is, j € A and (u,v,R, W) €
WL2(S;IR?) x W22(S) x R x Ry such that W € NRY,

(c) ifa >4, then (j,u,v, R, BW) minimizes the functional
TK (1,0, R, W) == EVK (u,0) / f - RU; e dx — F(RWL)
S

over all the admissible quintuplets (j,u,v, R, W), that is, j € A and (u,v,R,W) €
WL2(S;IR?) x W22(S) x RJ x RY3 such that W € NR%,.
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Remark 3.1.9. Given that the scaling of the forces is of order h7*1, we expect the
action of the load on the in-plane displacement to be negligible. This is indeed the
case and the limiting forcing term acts only on the out-of-plane displacement. The
additional term F (RWzll]-) can be interpreted (see also [MM21]) as an elastic cost
of fluctuations of the reference configuration from the optimal rotations.

From a minimization point of view, since the term F (RW? Uj) is always non-
positive (see Section 2.2.3), it is clear that the optimal choice is W = 0. In particular,
in Theorem 3.1.8 we actually have g = 0. Similarly, since for every A € ]ngxe%v and
foreveryj=1,...,] we have

E]]-“VK(Ax’,v) < ELVK(M,Z)) Vu € WY2(S;R?) s.t. sym(Vu) # 0,

: _ 2x2
in Theorem 3.1.8—(c) we infer u = Ax’ for some A € R% .

Before moving to the proofs of our results, we provide an example of rank-
one connected double-well structure for which different applied forces result in
different preferred reference configurations.

Example 3.1.10. Let S := (—3, 3)? and consider

4 0 0 2 01
uy:=101 0}, =101 0].
0 01 1 01

Fora, b, c > 0, consider the sequences of loads
Fu(x') == K7 (ax eq + bxyey + cxqe3).

The limit force f(x") = axje; + bxpey + cxqe3 is pulling the mid-plane S along
fibres parallel to e; and ey, while twisting it in the out-of-plane direction. With
some simple computation we get

1
F(Rul) = E(4LIR11 + bRy + CR31),
1
F(RUy) = 12[ a(2R11 4 Ry3) + bRy 4 ¢(2R3;1 + Ra3)].

Note that, if a = 0 and b, ¢ > 0 (i.e., f is pulling the mid-plane S in the e, direction
only), then one has that

F(RUY) < - (b+c) < E(RUy), YR €SO(3),
where
V.,
) 7 2
R = 0 1 0
Vi \2
2 2

In particular, A = {2} and the only admissible well at the limit is SO(3)U;
However, ifa > 0and b = c = 0, that is f is tensing S along e; without twisting
the mid-plane, we have

F(RUZ) 2Rq1 + R13) < < - = (U1), VR e 50(3)

12 ( 1537
Thus, A = {1} and the only admissible reference configuration is SO(3)U
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3.2 Compactness estimates

In order to study the I'-convergence of the functionals Ej;, we first need to establish
compactness for sequences of deformations that have bounded rescaled energy. It
is clear that the elastic part of the rescaled energy forces the rescaled deformation
gradient to approach in the limit the union of the wells K. However, we would
like to prove that the rescaled gradients are actually getting closer to a single well
K'. This is precisely ensured by the penalty term. In the following result, inspired
by [Ali+18], we give a precise meaning to this statement.

Proposition 3.2.1. Let a > 2. Let (y;,) C WY2(Q);IR®) be a sequence such that
lim h*E}} =0. 3.12
lim h*E} (yn) (312)
Then for h < 1 there are an index i, € {1,...,1} and two constants §, C(6) > 0 such
that

Ly, S (Vi Kiv) dx < COIEL (), 613)
ey G158 (T K dx < COMER )" + B, 614
where Wi = {x € O : dist(Vyy,(x), Kit) < 6} and
o2
5/3 otherwise.

For the convenience of the reader, we give a self-contained proof following the
same arguments used in [Ali+18, Theorem 2.3]. We start with two preliminary
Lemmas, the proofs of which can be found in [Ali+18, Lemmas 2.5 and 2.6].

Define, for A € R3*3,

W(A) = fy(dist(A,K)),

where we recall that f,(f) := t> A 1. Let
5 — 1 dxd
d55(A,B) = i“f{ [ V)T ()] ds: € € CH(fo, 1R

st &(0) = A,&(1) = B},

where mq,my > 1 aresuch that1/my +1/mp = 1.

Lemma 3.2.2. Let 6 > 0andi € {0,...,1}. There exists C > 0, depending on 6, such
that
dist(F,K') < Cd;(F,K')  VF € R*s.t. d5(F,K') > 6.

Lemma 3.2.3. Let 6 > 0and i € {0, ...,1}. There exists a constant C > 0, depending
on b, such that

dist(F,K') <C  VFeR¥3 st d(F,K') < 4.
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Proof of Proposition 3.2.1. Fix § < 1 A min;y; { dist(K’,K/)/2} and define

={x € OQ: dist(Vyy(x),K) <6} = U o,
where

Q= {x € Q: dist(V,y,(x),K') <6}

Note that, by (3.1), condition (3.13) holds with any j € {1,...,1} in place of i;. By
(3.12)and (3.1) we have that

0\ = ﬂié) Jryeg Fr @ <CO) [ fiist(Ty K  (315)
< C(6)h*Ey(yy) — 0.
Hence, there exists i;, € {1,...,1} such that || > C(J). We define
&n(x) = (dyp(Vaya(x), K) =) v 0
where § == (52"%“. For x € Q" let Uy € K’ be such that
IViyn(x) — Ux| < 6.

Let

Ex(t) = (1 = ) Viyp(x) + tU,.
Recall that A + dist(A, K) is 1-Lipschitz and f; is monotonically increasing. Thus
W(Ex(1)) = fy(dist(Zx (1), K)) < fo(I(1 =) Viyn(x) = (1= DUx]) < f(6) = 6%
We deduce that
1 ~

‘ oy
Ay (Vi (x), K) < / (W& (1)) 72 [ V() — U dt < 6575 7 = 5,

In particular, g, = 0 on Q. Set B := p/m; and choose m; in such a way that
B < 3. We prove that g, € W'A(Q) and

/ IV gnlP dx </ (Viyn)) "12|V(Vhyh)|ﬁdx (3.16)

In order to do so, we proceed by approximation. Firstly, note that dW(~,Kih) is
locally Lipschitz. Indeed, since the triangular inequality holds for d;;, we have

) . 1 __ my
|dW(A,K’h) — dW(B,K”')| < dW(A,B) < /0 W(tA+ (1 —t)B)™?|A — B|dt.
Thus, it is sufficient to estimate

1 __ m 1 m
/W(tA+(1—t)B)Wlndt=/ f,(dist(tA + (1 — £)B,K)) ™" dt,
0 0
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when A, B belongs to a ball of radius R. Let Uy € K be such that dist(0, K) = |Up|.
Then, since dist(-, K) is 1-Lipschitz and fq is monotonically increasing
1 my 1 my
/ fa(dist(tA + (1— £)B,K)) ™7 dt < / fa([H(A — B) + B — Uy|) ™7 dt
0 0
< fy(JA| +2|B| + dist(0,K)) ™7 < C(R).

Define

8 = (dy(Zn, K'r) =) V0,
with

Cn=—nV (nAVyy(x)),

where both V and A are intended entrywise. Since dW is locally lipschitz, and {,
is bounded, we deduce that gj € L*((Q)). By classical results on composition of
Lipschitz and Sobolev functions (see, for example, [Zie89, Theorem 2.1.11]), we
deduce that g}! € W1 () and the chain rule applies. In particular,

Vel < |de(€anih)Hvén|-

For any B € R3*3 with unitary norm, we have
, . 1__ g
dys (A, Kin) — dizs (A + B, Kin)| < dy(A, A+ eB) < /0 WI(A + teB) ™7 |¢B| dt.

Dividing by € and passing to the limit as ¢ — 0, we deduce

Wll

V(A Kin)| < W(A) 7.

Thus, we can estimate

mq

|V (T, K)| < CW(Zn) 72
We show now that, at least for n > 1,
W(Zn) < CW(Viyn)- (3.17)

Indeed, (3.17) is obvious if {,, = V,y;,. If this is not the case, then |V, y;,| > [C4],
and forn > 1,

dist(Z,, K) < dist(0,K) + |Zn| < dist(0,K) + | Vv
< dist(0, K) + max{|U]| : U € K} + dist(V,y;, K) < 2dist(Vyy,, K).

Since f; is monotonically increasing, (3.17) follows. Thus,
—~ m —~ o
Vgiil < CW(8a) ™ [V Viyn] < OV (Viyn) ™7 [ Vi,
so that by Young’s inequality and (3.1)

—~ 1 P —~
IVgrE < CWV(Vuyn) m [ Vayn ™ < W(Vayn) + | VaynlP < W(Vayn) + | VayulP.
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Hence, Vgj is uniformly bounded in LA (Q, ]RS). Note that, for n > 1, we have
gy =0on Q'in. By Theorem 2.2.1, we get that g} is uniformly bounded in WLA(Q).
Thus, up to subsequences, g — & in WLE(Q). Since g4 — &n poinwise, we have
8n = gn- Estimate (3.16) follows by lower semicontinuity.

Applying the Sobolev’s Embedding Theorem, Theorem 2.2.1, and the Young's
inequality, we deduce that

[ lsnl? ax < o) (191 )

I
< W(Viyn) "‘2|V(Vhyh)|ﬁdx>ﬁ (3.18)
h*
n(h

=%

ol
) Ej,(yn)

m\"ﬁ

C(0) 5

where B* := 3B/(3 — B) is the critical Sobolev exponent in dimension 3. Note
that here we used the crucial information that || > C(5) to deduce that the
constant in the Poincaré’s inequality can be chosen independently of h. Let

oM = {x € Q: dy (Viyn, K') < 25}
By Lemma 3.2.3, we can refine the choice of J in such a way that
i\ e ¢ 0\Q" ¢ Q\QM,

Moreover, by Lemmas 3.2.2 and 3.2.3 we have that

dist(Vyp, Kit) < C(8)g, on Q\ QM

dist(Vyyp, Kit) < C(8) on Qi \ Qi
Thus, writing O \ Q" as (O \ Q%) U (Y \ Q) we deduce from (3.15) and
(3.18) that

/()\le,ih dist® (Vyp, K') dx < C(0) /

g 107+ COIE\ 04

(3.19)

*

h"‘% B
< C(9) (WEZ(W) P +h“Eﬁ(yh)>.

If g # 2, we choose | := 5p/6. Note that m; > 1by (P3). Then p = 6/5, p* =2,
and p*/B =5/3 = 6. By (P1) and (3.19) we get (3.14).

If g =2, we choose my == p,sothat f =1, p* =3/2and */p = 0 = 3/2. Fix
a constant M > 0 such that K C By;(0) and define

BY' == {x € Q: [Vyyn(x)| < M}.
Writing Q\ Q) as ((Q\Q"n) N BM)U ((Q\Qh'ih)\B}]lVI), by (3.1) we deduce that

dist? (Y, vy, Kin) d <c5/
/Q\Qh,ih ist™(Viyn, K') dx < C(6) PP

+ C(é) /(Q\Qh’ih)\BﬁA W(vhyh) dx

diSt% (Vhyhr Kih) dx
(3.20)
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Then, (3.14) follows by (P1) and (3.19)3.20). O

Remark 3.2.4. At a first glance, it might seem that the hypothesis (3.12) of Pro-
position 3.2.1 does not depend on &, while the thesis (3.14) does. However, (P1)
prescribes a dependence on « of the penalty term coefficient (/). This is particu-
larly clear examining the proof above.
Corollary 3.2.5. Let a > 2. Let (y,) C W2(Q);R3) be a sequence such that

lim h*Ej; =0.

lim h*E} (yn)
Then for h < 1 there are an index i, € {1,...,1} and a constant C > 0 such that

/ dist? (Vyyp, Ki) dx < CHYEX (yy).
O

The following is a variant of the well-known rigidity estimate by Friesecke,
James, and Muiller (see [FJMO02; FJM06]), where the well SO(3) is replaced by
K7 =SO(3)U; (see Section 2.1 for the definition of K/).

Proposition 3.2.6. Let (y,) C WY2(Q;R3) and let j € {1,...,1}. Define
Dyj = || dist(Viyn, Kl r2(qr)-

There are two maps R;, € L®(S;SO(3)) and R;, € W'2(S;R3*3) N L®(S; R3*3) such
that

(R1) [[Vhyn — RpUjll 120y < CDyj,
(R2) |[V'Ryll2(s) < Ch™'Dy,
(R3) ||Ry = Ryll2(s) < CDyj,
(R4) [[Ry — Ryl[p~(sy < Ch™'Dy,.
Moreover, there exists a constant rotation Qy, € SO(3) such that
IRy — Qullr2(s) < Ch™'Dy .

Finally, th’th,]- — 0, then for h < 1 we can choose R, = Ry,

To prove this result it is enough to follow the same approach of [FJM06]. Indeed,
the rigidity estimate [FJM06, Theorem 5] holds also for a well of the form SO(3)U;
by a change of variable. Then, all the estimates in [FJM06, Theorem 6] can be

carried out in the same fashion.

Remark 3.2.7. If r > 1, all the results of Proposition 3.2.6 hold with the L? norm
replaced by the L norm and the factor 1! replaced by h=2/"
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3.2.1 Compactness in the Kirchhoff’s regime

61

In the case & = 2 the I'-limit is written in terms of the deformation gradient. In
this section we show compactness for sequences of rescaled gradients and give a
characterization of their limit. Firstly, we need an explicit expression of the vector

v that appears in (3.2).

Lemma 3.2.8. Let U be a symmetric and positive definite matrix. Let y € W*2(S;IR3) be
such that V'yTV'y = (U?)". Then there exists a unique function v € W2(S;R3) such

that
(V'y v)U ' e€so(3) ae. inS.

In particular, v is given by

1

2
W det(u_l)(a]y A 82]/) — Z(u_lek . u_leg)aky .

k=1

vV =

Proof. For the existence, it is enough to prove that (V'y v) ' (Vy v)=Uu?

det (V'y v) > 0. By the hypothesis on y we need to prove that
@) 9y -v = (U3,
(ii) 9oy - v = (U?)23,
(iii) v-v = (U?)33

For j =1,2 we have
1 3
djiy-v= R k;(uflek U eg) (UP) e + (UP)j3 = (UP)j5.
To complete the proof we observe that
|Uey A Uey|? = |Uey |*|Uer|* — (Uey - Uey)? = 91y A dpy >
and, since Uey A Uey = cof(U)e3
|Uey A Uey)? = | det(U) U e3|? = det?(U)|Ue3 .
We are now ready to conclude:

1 (U lep-Ules) &g 1 2
T [uep " [U—Tes )4 k;(u o U es) (W

U_lez . U‘le3 3 _ _
( \u71e3\4 ) Yo (U e U les) (U)o
k=1

u- 1e3|z Z e U es) (Ui + (UP)as

1 1
uTles U es]?

+ (U?)33 = (U?)33.

and
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To show that det (V'y  v) > 0, it is sufficient to note that

1 0 —ﬁ(U71€1 . U71€3)
1 -1 -1
(V'y v)=(dy dy dqyAdy) [0 1 —gigpU e-Ues) |,
00 det(U1)
[U~tes|?

and that the determinant of both matrices in the right-hand side is positive.

To prove uniqueness we observe that, for any choice of two different rotations
Ry, Ry € SO(3), we have rank(R; — Rp) # 1. Indeed, given a vector v € R3 we
have

Ry —Ry))v=0 < Ryv=Ryw < RIRjv=no.
(1 1 2 N1

Since RIR; € SO(3) and RIR; # 1d, we deduce that v € ker(R; — R,) if and only
if v is parallel to the rotation axis, that is, v belongs to a 1-dimensional subspace.
In particular, rank(R; — Rp) = 2. Suppose now that there is another vector 7 such
that

(V'y #)U ! €S0O(3) ae.

Then,
0O v—-9)U'=@w-7) U e

coincides almost everywhere with the difference of two rotations and has rank 1
whenever v # 7. Thus, v = 7 almost everywhere. O

We move now to the proof of the first part of Theorem 3.1.1.

Proof of Theorem 3.1.1—(i). By Corollary 3.2.5 there is a sequence of indices i;, €
{1,...,1} such that
| dtist(V g, K|l 2 < Ch

Upon a further subsequence, since i, takes values in a finite set, we can sup-
pose ij, to be constant and equal to j. Construct the sequences R;, and R; as
in Proposition 3.2.6. Clearly, R, is bounded in W12(S;IR¥*3) thus it converges
weakly, at least along a subsequence, to a map R € W12(S;R3*3). Hence, we have
R, — Rin L2(S;SO(3)), so R takes values in the set of rotations. Consequently,
\A Uj_l — Rin L2(S;R®**3). By an application of the Poincaré-Wirtinger in-
equality we have
Iy — enllwiz < ClIVayillz < G,

where
1
o = @/th(x) dx.

Thus, y;, — ¢; converges weakly (possibly along a subsequence) to some map
y € WH2(Q; R3). Since h~ 193y, is bounded in L?(Q;R3), we have d3y = 0 and
y € W'2(S;R%). Hence, V'y = (RU;)'2,y € W?2(S;R?) and V) y;, — V'y. Lastly,
since v is uniquely determined by the condition (V'y v) U;l € SO(3) almost
everywhere, the remaining part follows from Lemma 3.2.8. O
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Corollary 3.2.9. In the same setting of Theorem 3.1.1, there is a sequence (Ry) C
L*(S;SO(3)) such that, up to a subsequence

Gy = h"! (R,fvhyh - u]-)  Gin L2(Q; R, (3.21)
Moreover, G12 is affine in x3, that is
G2 (', x3) = Ga(x') + x3Gp(x').

Lastly,
(U;Gy)' = V'y"V'v. (3.22)

Proof. Arguing as in the proof of Theorem 3.1.1-(i) we have
| dist(Vpyn, K |12 < Ch,

for some j € {1,...,1}. Let R, € L®(S;SO(3)) be the map given by Proposi-
tion 3.2.6. Convergence (3.21) follows from (R1). Moreover, arguing again as in
the proof of Theorem 3.1.1-(i) we deduce that, up to subsequences, R, —+ R €
L%(S;SO(3)) and Vhyhllj*l - (V'y v) Uj*l = R in L?(Q;R?*?), where v is
given by Lemma 3.2.8. Define

1
H; (%', x3) = E(Gh(x,’ x3+5) — Gy (¥, x3)),

for s such that x3 +s € I. Fora =1,2,3 and p = 1,2 we have

1 (9 Y
INTTS () _ 1.1 ) . o)
(Rh(x )Hh(x/x3))a‘3 - Sh < axﬁ (x,X3+S) axﬁ (x/x?))
. 1 0 s 1 ayh,“ ,
— E@ L 7 s (x',x3 4+ 0)do.

The right-hand side converges strongly in (W&’2 (Q))* to (V'v),p ash — 0. Indeed,

one has that ||9; < » for ever € L2(Q), where || - is the
8ll¢ SlL Yy 8 (

Wélz)* Wélz)*
standard operatorial norm. The left-hand side converges weakly in L?(Q) to

(V'y v) Uj_le(x’,xg,))aﬁ,

where ,
HE (2, 28)ap 1= (G5 + 8)ap = G(¥',33) 1p):

Since L2(Q) is continuously embedded in (W&'Z(Q))* we obtain
H (', x3) 5 = (U7 (Vy v)" V), Ya=123Vp=12

In particular, the first two columns of H® are independent of x3 and so the first two
columns of G are affine in x3. Finally, we have

(WG = (Vy v)' V'v)ia = V'V,
that proves (3.22). O
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3.2.2 Compactness in the Von Kdrman’s regime

In the case & > 2 we write the I'-limit as a function of the in-plane and out-of-plane
displacements. The next results give the correct scaling to extract their convergence.
We start with a preliminary Lemma.

Lemma 3.2.10. Let (M) C R3*3 be a sequence such that |M, —1d| < ChP for
some B > 0. Then there is a sequence (P,) C SO(3) such that skew(P,M;) = 0 and
|P, —1d | < ChP.

Proof. For h < 1 the matrix M, is invertible with positive determinant and so
its polar decomposition M, = Rj Ay, is uniquely determined providing a matrix
P, € SO(3) (i.e., P, = R]) such that P, M), is symmetric. We have that

M), — Ry| < |M, — X]| VX € O(3). (3.23)
Indeed, since M, = Ry, A}, one has
| My, = Ry|* = Tr((My — Ry) T (My — Ry)) = [My,[> = 2Te(Ay) +3,

and similarly
My, — X[> = |M,|* = 2Tr(MIX) + 3.

Since Ay, is symmetric and positive definite we can write A, = Oy, O; for some
Oy € O(3) and ¥, := diag(0y,), with 3,; > 0. Thus, since the trace is invariant
under circular shifts

My, — Ry > — M), — X|* =2Tr(Mf X — A;) = 2Tr(0, 2,08 Rl X — 02,05
= 2Tr(Z,0L RI X0y — ) = 2Tr (%Y}, — X))

3
=2Y i ((Yn)ii —1) <0,
i=1

where Y}, := O] Rl XO;, € O(3). Hence, by (3.23),
Py —1d| = [Ry —1d | < [Ry — My| + |M;, —1d | < ChP.
O

Proposition 3.2.11. Let (y;,) C WV2(Q;R3) be a sequence of deformations such that

limsup Ej; (y,) < C,
h—0

where o > 2. Then, for h < 1 there are an index j € {1,...,1}, rotations R;, € SO(3),
and vectors ¢, € R such that, setting ¥y, as follows

7 = Rijyn +cn,
there exist R;, € W12(S,SO(3)) that satisfies:
IVign — RulUjl 12y < CHT, (3.24)
IRy —1d || ;2(5) < CHT, (3.25)
IV Ryl 2s) < CHYL. (3.26)
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Moreover, there exists A & W1'2(S,]R2kxeiv) such that the following convergences hold
true, possibly along a nonrelabelled subsequence:

Ap:=h"T(R,—1d) — A in W2(S; R%9), (3.27)

WY (Vg — U;) — AU, in L2(Q;R3*3), (3.28)
2

h?=27 sym(R;, — 1d) — A? in L2(S;R>*3). (3.29)

Lastly, convergences (a)-(b) of Theorem 3.1.3—(i) hold and A has the following structure:
UiAU; = e3 @ V'v — Vv @ e3. (3.30)

Proof. Up to a subsequence extraction, by Corollary 3.2.5 we have, for some index
je{1,...,1}, that

Dyj = || dist(Vyyn, K[| 12() < Ch7,

where we recall that v := a /2. Let Q) and Ry, be, respectively, the constant rotation
and the map whose existence is guaranteed by Proposition 3.2.6. Since h~! Dy;—0

we can suppose that R, € W'2(S;SO(3)). Let §, := Ql'y;,. By definition j, and
Ry, = Qth satisfy (3.24), (3.25)and (3.26). Let
1
M ::—/ VU dx.
h |Q| o hYh ]
From (3.24) and (3.25) we can deduce

1
M, —1d :M——/Idd

1 o
< @/QWhyhUj ' —1d|dx
< Ch7 L,

Therefore, by Lemma 3.2.10 there exists a rotation P, € SO(3) such that |P, —Id | <
Ch'~—!and

/Q skew (thhghuj—l) dx = 0.

Thus, redefining 7, == P,Qlyj, (so that R, := Q,P[) and R, = P,Q]R), we can
additionally suppose that

U o
/stew (Vhyhllj ) dx = 0. (3.31)

Moreover, we can choose the additive constant vector ¢j, so that

_ x!
/Q (yh —u (hx3)> dx = 0. (3.32)

From (3.25) we deduce that ||A||;2 < C. Moreover, since VA;, = h'~7VR,, by
(3.26) we have that Ay, is bounded in W2(S;IR3*3). Hence, up to a subsequence,
there is A € W12(S;R3*3) such that (3.27) holds true. By (3.24) and (3.27) we get
(3.28). Using the identity

(Q-1d)"(Q—1d) = —2sym(Q—1d)  VQ €SO(3),
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we obtain
1 - -
sym(Ay) = 5h' (R - Id)" (R, —1d) — 0 = sym(A) in L2(S;R¥*3),
thatis, A = —AT.In particular, we have

2
h?727 sym(R, —1d) = —%A,{Ah — % in L2(S; R3*3),

that is precisely (3.29).

To simplify the notation, we will write U instead of U; for the rest of the
proof. Consider vy, as defined in (3.4) for the deformation #,. By (3.32) and the
Poincaré-Wirtinger inequality it follows that

th”%\/-],z(s) S CHVUhH%Z(S,JRZ) S Ch2—2'y /Q |u(v/y~h(x) _ u1,2)|2 dx
< 2 [ Vi — P dx < O [ V- UPdx < C.
Q

Hence, up to a subsequence, there is a map v € W'2(S) such that v, — v in

W12(S). Now, we want to show that V'v;, — V'v = eg(llz‘lll)l’2 from which we
can deduce that v € W?2(S). Clearly,

Iy — 1= T I~ 7171,2
Vo, =h /063U<Vyh u )dx.
By (3.28), it follows that
V'o, = V'v = el (UAU)'2, (3.33)
Now we focus on the map uy, defined as in (3.3). We have
l — i -y 1,2—2y I~ 1712
/stew(v uy) dx = min {h ,h } /stew (Uu(v gn—Uu )) dx
= min {577, 12721} /Q Uy o skew (VU —1d ) U2 dx
_ . —y 3,22y ~ -1 _ 1,2
min {h , h } U {/Q skew (Vhyhll Id) dx] u

and the last term is identically zero by (3.31). Therefore, we can apply Korn’s
inequality to deduce

Huh||12/v1,2 <C| sym(V’uh)Hiz(Sﬂszz)

< Cmin {h*”, hH’V} /Q ‘sym(VhﬂhU’l - Id)‘z

dx
< Cmin {n2, =7} [|[03,U = Ry + || sym(Ry — 1)|1%
< Cmin {h_zv, h4_47} max {hh, h47_4} <C,

where we have used (3.24) and (3.29). This proves the weak convergence of u;, up
to subsequences. Reasoning as before it is easy to note that

K7 max {m, hZV‘Z} V'uy, — Uy, AU = (UAU).
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By the assumption 7 = «/2 > 1 we have that h'~7 max {h?, h*7~2} — 0, so
(UAU)" = 0. Since A is skew-symmetric, so is UAU and this shows (3.30) by
(3.33). 0

Remark 3.2.12. In our setting uj, and vj, are the (suitably rescaled) components of
the displacement wj, with respect to the reference configuration U;() in the basis

{u]._lel-: i=1,2,3}, thatis,

1 (max{h7, B2}y,

Note that a basis of the tangent space to the midplane U;(S x {0}) is given by
{Uje1, Uje }, while the normal direction is U les. Thus, it may look more natural

to define the in-plane and the out-of-plane displacement in terms of this basis, that
is, to consider i, and 7}, such that

/] Sy —
wy = LI] <0h> —|—Z)huj 163.

It is easy to see that

uy = min{h~7, >V H(UP) i,

o= (5 072 () ),

so that h'~73, has the same limit as v;,, while min{h~7, h?>~27}ii;, converges to
some i, representing the same displacement as u expressed in a different basis.
Note that the same argument would apply defining 7, in terms of a basis of the
form {Ul, Uy, U]-_1€3}, with vq,0;, € span{ Ujel, u]'ez}.

Corollary 3.2.13. In the same notation and hypothesis of Proposition 3.2.11, there exists
amap G € L?(Q,R3*3) such that, up to a subsequence,

Gyi=h" (R,{vhgh - u]-) — G in L2(O; R¥3). (3.34)
Moreover, G12 is affine in x3, that is

G2 (', x3) = Ga(x') + x3Gy(x).

Finally,
(U;Gy)' = —(V)?v
and
sym(U;G,)" = sym(V'u) ifa >4, (3.35)
(sym(U;Gy))" = sym(V'u) + %\Uj_leg\zvlv @ Vo  ifa=4, (3.36)

V'u+V'ul + |U]f163|2V’v ®@V'v=0 fa<a<4 (337
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Proof. We will write U in place of U; to simplify the notation. Convergence (3.34)
follows immediately from (3.24). To show that G1? is affine, we study the difference
quotient
1
Hj,(x', x3) == < (Gu(x', 23 +5) = Gu(x', x3)),

for s such that x3 + s € I. Repeating the same computation as in Corollary 3.2.9,
we deduce that fora = 1,2,3 and § = 1,2 we have

- 1 0 S 1 107
(Rh(x’)Hfl(x',x3))lxlS = sax,g/o |t <h ay;’;‘ (x/,x3 +0) —Ea3> do. (3.38)

By (3.28), the integral on the right hand-side converges strongly as i — 0 in L?(Q)
to

| (At de = s(au),.

Hence, the right-hand side of (3.38) converges strongly in the dual of W&'z( Q) to

% [(AU) ;3] By (3.34), the left-hand side of (3.38) converges weakly in L?(Q2) to
p

1
H (¥, 23) = g(G(x’, X3+ 5) a5 — G(¥', x3) 1) (3.39)
Since L?(Q)) is continuously embedded in (Wy*(Q))*, we obtain

i[(All)aa] Va=1,23Vp=12 (3.40)

S (e —
H (x rx3)1x’[3 - 8x5

In particular, the first two columns of H® are independent of x3 (recall that A
depends only on x’) and so the first two columns of G are affine in x3.
For the final part of the statement note that G;, can be rewritten as follows

Vg = U Ry U T Vidn — RpUj
G, = I — W + (Rh — Id) —
Hence,
Vignl; ' —1d R, —1d
_ j 1,2 2 h 12
(UJ'Gh)/ - (uf)mh—'y(uf) — (uf)l,z H2v7—2 (LI]-)
AL (3.41)
U (Ry —10)T T

If ¥ > 2, then min{h~7,h?~27} = h~7. Integrating with respect to x3, taking the
symmetric part and passing to the limit as 1 — 0 in view of (3.24), (3.27) and (3.29),
we get (3.35).

If v = 2, passing to the limit in (3.41) we also get the term — (U A?U’) /2. By the
characterization (3.30) of UAU we get with some computation

(UAZU) = (UAU(U1)2UAU) = (UAU) (U H2(UAU)Y?
= Vol (U les)TU esV/o = —|U 1e3]* Vo ® V',



3.3 PROOF OF I'"CONVERGENCE 69

proving (3.36). Lastly, if 1 < 7 < 2, we multiply both sides of (3.41) by h*~7 before
passing to the limit. The left-hand side converges to 0, while the right-hand side
converges again to

sym(V'u) + %|U]fle3|2V'v ® V'y,
proving (3.37). Finally, note that G, = H! by (3.39). Thus, by (3.40) for &, = 1,2
3 aAkl 0 0%

UGy = ), (U akZaxﬁ I = gy AW = 5 500

O

Proof of Theorem 3.1.3—(i). It immediately follows from Proposition 3.2.11 and Co-
rollary 3.2.13. O

3.3 Proof of I'-convergence

We are now ready to complete the proofs of Theorem 3.1.1 and Theorem 3.1.3. By
the results of the previous section, we just need to prove the lim inf inequality and
the existence of recovery sequences.

3.3.1 Theliminf inequality

Proof of Theorem 3.1.1—(ii) and Theorem 3.1.3—(ii). Define the matrix Gy, as in Corol-
lary 3.2.13 or Corollary 3.2.9, depending on the value of «. Let

Q= {xeQ:|Gu(x)] <h™ 1}

and let xj, be its characteristic function. Clearly, x;, is bounded and x; — 1in
LY(Q). Thus, we have x;,G;, — G in L?(Q). Expanding W, we get

1
W(Viyn) 2 WU +17Gy) 2 5Q;(h7Gy) —m(hY|Gp|)h* |Gy,

where m is the modulus of continuity of D?W at U;. In particular
1
Exn) > 5 [ [Q00Gn) —m(h Gi iG] dx

> %/{)Q]’(XhGh)dx—Cm(h%l)-

Recall that Q; is weakly lower semicontinuous in L?(Q) by convexity. Thus,
passing to the limit and applying Lemma 2.2.5 we obtain

hmme,1 Yn) /Q] dx—/ Qi(Uu; “lsym (U;G)) dx

> i(sym(U;G)") dx.
> [ Qisym(u;G))
Recall that
sym(U;G(x', x3))" = sym(U;G,(x"))" + x3 sym(U;Gy(x"))".
By Corollary 3.2.9 and Corollary 3.2.13 we conclude. O
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3.3.2 Recovery sequences

We are left with the construction of the recovery sequences. Here, for a clearer
exposition, we follow the reverse order and start with the recovery sequence for
the case & > 4.

Proof of Theorem 3.1.3—(iv). Let j € {1,...,1}. Suppose a > 4. By a standard
density argument it is sufficient to exhibit a recovery sequence for u € C*®(S;R?)
and v € C*(S). We define

WY 1., w1
B )= (1, ) (vov ) + B + (),

and
x/ -
yn(x', x3) = U; (hX3) +U; 1B, (x', x3),

where ¢,  are smooth functions independent of x3 to be chosen later. We immedi-
ately deduce that

Q) W=7, =v+ 21—4h2§3 — vin W2 (Q),
(i) W Yuy, = u+ 21—4}1512 — uin W2(Q; R?).
Computing the rescaled gradient, we get

Viyn = Uj + U 'V;,By (', x3),

where
VB = KW (V) ‘hlV'”T> (8 +0) @es| + O,
h=V'v 0
By construction, we have Vy;, = M, U;, where
M, =1d +uj—1vhBh uj—l.
We first compute M] M}, and obtain
My My, = 1d +2U;  sym(V;, By )U; ! + O(h72). (3.42)

Note that sym(V),B,) = O(h7). Then, we develop |/ M] M}, near the identity to
obtain

VMIMy, = Td +U; " sym(V,B)U; ™+ O(1272).

Let W(P) = W(PUj) for every P € R**3. Clearly W is frame indifferent and

D*W(Id)M : M = Q;(MUj).
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Note that ¥ — 2 > 0 whenever a > 4. Developing W near the identity and recalling
Lemma 2.2.8, we obtain

W(Viyn) = W(M,) =W (\/M;{Mh>
= D*W(Id)(M;, —1d) : (M), —1d) + o(|]F —1d |?)
= hz'V%Qj(h_“Yu]._l sym(Vy,By,) + O(h7~2)) + o(h*7).

Observing that V2y, = ]flszh = O(h"~1), we get by assumption (P2)

Tim B () = 5 [ QU sym(B)

B:= u]fl ((v/” —x3(V)% O) +x30 ®e3 +{® 63)) .

where

0 0

Choose ¢ := —2L;((V')*v) and { := 2L;(sym(V’u)) where L; is the linear operator
defined in (2.9). Thus,

> [ QU sym(s 24/(2, Yo+ sym(E @ es))) dx’
2/ Q;(u p Ysym(V'u) 4+ sym({ @ e3))) dx’
24/Q] v) dy’ +8/Q] (V'ul +V'u)dy’

as desired. The factor 1/24 is due to the integration of x over I, while the mixed
term gives no contribution since x3 has zero mean over I.

Suppose now a = 4. We use the same recovery sequence and the same notation
as in the case & > 4. The main difference is that terms of order #1272 in (3.42)
cannot be neglected. By some simple computation we get

M,{Mh_ld+2h2 (Ph+V)U Lyom®),

where
V'iu—x3(Vh2%0 —h"1V'v 1,
b, = ( hleV(/v ) 0 ) + (0l + ) ®es + §|Uj le32V'o ® V',
-1 Ao, T / [ —
V::f(llj eg'uj Vv)sym(Vv®63)+§‘U]- V' ‘ e3 ® e3.

Hence, developing the square root we obtain

VMM, = 1d +12U; sym(P, + VU + O (7).
Note that sym(P},) is independent of h. To conclude it is then sufficient to choose
2
v

&= —2L;((V')?v) and

7= —% ’U]f1V’vT‘263 + (U]7163 - U]ﬂV’vT) V'v

+2L; (sym(V’u) + %|Uj_1e3|zv’v ® V’v) .
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In the case 2 < & < 4 the construction of the recovery sequence is different and
involves the perturbation of an isometric immersion. In doing so, we will need
some higher regularity of the boundary of S to deal with the penalty term. We
start by proving a preliminary Lemma.

Lemma 3.3.1. Let U € R®>*3 be a symmetric and positive definite matrix. For e > 0 let
ye € W22(S;R®) be a map of the form

x/

ye(x') =U <0> + eol les + £2U (LSS) ,
such that V'yTV'y = (U?)', where v € W*®(S) and u, is a bounded sequence in
W2 (S;R?). Then, if v¢ is defined as in Lenma 3.2.8, we have
V'yIV've = —e(V')?0 + O(?).

Proof. First, we compute 01y, A da1/e. We have

_ 0 _ 0
01Ye N\ doye = Ueg AlUep +¢ [Uel AUt <62v> +u-t <a1v) A Uez] + O(ez).

Given the identity Ua A Ub = det(U)U~!(a A b), we easily deduce that
01Ye A Doy = Uey A Uey
+edet(U)U? {azvel AU 1) %e3 4 910(U~1)2e3 A ez} + O(?).

Computing the cross products, we get

U~ e3|?010
01Ye A doye = Uey A Uey — edet(U)U ! |U~te3]20,0 + 0(?).
— Z%:] (Uﬁlek . Ufleg)akv
Let us set (') := —m Y2 (U le - U te3)d40. We have

/ _ —1, 2 (V) 2
V'(01ye N 02ye) = —e|U ™ "e3|~ det(U)U Vig +0(e%).

Now observe that for every triplet of indices i, j, k = 1,2 we have
0iVe - afkyg = O(&?).

Moreover,
aylu— =el +0(e).
Combining the previous equations with the definition of v, the thesis follows. []

Proof of Theorem 3.1.3—(iii). Firstly, suppose that v € C*®(S) satisfies (3.5). By Pro-
position 3.1.2 we have det((V’)2v) = 0in S. For i < 1 we can apply The-
orem 2.2.11 and construct a sequence u;, € W>®(S;IR?) with ||uy,|| 2 uniformly
bounded such that the map

/
gn(x') = U; (f)) +h7_1vuj_163 + 172U (Lgh>
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satisfies V'] V'§j;, = (UJZ)’ Define vy, as in Lemma 3.2.8 with U = Uj for the map
7. We consider the recovery sequence given by

1
yn(¥', %) = Gy (') + hasvy (') + SHTGUTE(Y),

where ¢ is a smooth function independent of x3 to be determined later. Observe

that
Uy

o =0+ U7 <0

1.5 . 1,2
) e3+24h &3 — v inWH(S).
We have
Viyn = (V’]]h Vh) + hx3 (Vll/h 0) + hVX3U]-71(: ®e3 + O(h7+1). (3.43)

Define Ry, = (V'7, ) U]fl. By definition of v;, we have R;, € SO(3). We
rewrite Vjyy, as
Viyn = R, (U; + By),
where
V'§IV'y, 0

— -1
Bh = hX3uj ( 0 0

) + h7x3R,{u].—1g’: ®e3+O(hTT).

Note that we used the fact that v} V'v, = 0, which follows differentiating |v),| = 1.
By Lemma 3.3.1 with ¢ = k7~ we have

V'iIv'y, = 7Y V)20 + O(h*772).
Moreover, it is easy to check that R;, = Id +O(h7~!). Thus,

—x3(V')?0 0

=nu!
By hu]( 0 0

) + h7x3llj_1€ ®e3+O(M Y,
and Vyy, — Ujin L2(Q;R3*3). In particular, h~7Bj, — B in L?(Q; R>*3), where
1 (—x3(V)?0 0 ~1
B:=U; < 0 o) Txl G@es.

Developing W we get

W(Viyn) = %Qj(Bh) +o(h?).

We are left to estimate the penalty term. We have V4§, = O(h?~!) and, by
definition of v, V'v, = O(h7~1). By (3.43), it follows that V2y, = O(h7™1).
Hence, by (P2), we deduce that

1
lim EX(y,) = = / (B) dx.
Jm By () = 5 | Qj(B)dx
To conclude, it is sufficient to choose ¢ := —2L;((V')?*v), where L; is the linear
operator defined in (2.9).

For the general case of v € W?2(S) satisfying (3.5) we apply Corollary 2.2.13
and a standard diagonal argument to conclude. O
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We are left to construct the recovery sequence for o = 2.

Proof of Theorem 3.1.1(iii). Letj € {1,...,1}. Firstly, suppose that y € C*($;R?)
satisfies (V'y)TV'y = (sz)’. Define

1
yn(x',x3) = y(2) + hav (x') + SH2a3E (),

where ¢ is a smooth function independent of x3 to be chosen and v is defined as
in Lemma 3.2.8. Let R == (V'y v) U]fl. By construction R € SO(3) a.e. in S.
Computing the rescaled gradient we get

Viyn= (V'y v)+hx3 (Vv &)+ %hzxé (Ve 0)
:R[w+hm%4ﬂﬂﬁvm+hmﬂf®%+ow%]
Itis clear that V,y, — (V'y  v) in L2(S;R3*3). For h < 1 we expand W and get
1 -

W(Viyn) = Ehzxggj (u]. YWyIViy) +RTE® e3) + o(h?).

By the symmetry of Q; (see Lemma 2.2.5) we immediately deduce that
1 _
W(Viy) = Ehzxggj (u]. Y(Vy'V'v 4+ sym(URTE ® e3))) + o(H?).

Indeed, since 9;(V'y"v) = 0, the matrix V'y’ V'v is symmetric by the following
chain of equalities

81-]/ . 8]1/ = —ai]-y V= —ajiy V= —a]]/ : E)iv. (344)

Set ¢ := Ru]fle(V’yTV’v), where L; is the linear operator defined in (2.9). By
construction, we have

1y L (5.9
2 ./QW(Vhyh)dx— 7 /s Qi(V'y' V'v)dx +o(1).

Clearly, the rescaled Hessian V2y), is bounded in L*(Q); R¥*3*3). Hence, by (2)
we have
P (h)

| Vil dx =,

concluding the proof of the existence of a recovery sequence for a smooth y.
To conclude the proof, we first observe that E]K is continuous with respect to the

W22 topology. Let G; = (U]-Z)’ . For every y € W22, (S;R%), arguing as in (3.44),

iso,g]-
we have (V'y)TV'v = —(V’)?yv, where v is defined as in Lemma 3.2.8. Given a

sequence (1) C Wizs’(igj (S;R®) such that y, — y in W*?(S;R3) we have, up to a

subsequence, (V')?y, — (V’)?y almost everywhere in S. Let v, and v be defined
as in Lemma 3.2.8 for y, and y, respectively. Then, v, — v in L! (S; ]R3), thus, up to
subsequences, v, — v almost everywhere in S. Hence, (V')%y,v;, — (V')?yv and
by Dominated Convergence Theorem E]K(yn) — E]K(y).
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Moreover, the set of functions y € C*(S;R?) satisfying (V'y)TV'y = (UJZ)’
is dense in W22

iso,
&S Wizs’ig]_(S; R3). Define §(x) = y(g]flnx). Clearly, 7 € W*?(G1/25;R?) and

g (S ;R3). Indeed, let ¢ > 0 and pick an isometric immersion
j

VIV = g]fl/zv’yTv’yg]fl/z =1d.

The set G ]-1/ 2§ satisfies condition (2.17). Hence, by Theorem 2.2.12, there exists
a smooth isometric immersion ¢ for the flat metric Id such that || — ¢|| 22 <

1/2 T . 7(01/2 o (&.R3
€, /det(Gj ). Defining ¢(x) := 4)(9]. x) we getp € C°(S;R%),
Vo'Ve =G = (U7,
and ||y — ¢|lw22 < e. A standard diagonal argument allows us to conclude.  [J

Remark 3.3.2. Observe that the argument used in [FJM02] to prove the existence
of a recovery sequence cannot be applied here. Indeed, the truncation argument,
which is the basis of the construction of [FJM02], would lead to deformations with
a low regularity, for which the penalty term cannot be written.

3.4 Convergence of minimizers with dead loads

In this section we prove Theorem 3.1.6 and Theorem 3.1.8. We start by showing
that a sequence of deformations with bounded total energy has also bounded
elastic energy.

Lemma 3.4.1. Let & > 2 and q > 1. Suppose that (y;,) C WY2(Q; R®) is a sequence of
deformations that are quasi-minimizers for J;}, that is,

11]1[ J h _Hlf}a - ().

Proof. Firstly, we will prove that h*Ej;(y,) — 0. Fixj € {1,...,1} and let Qy, Ry,
be, respectively, the rotation and the map given by Proposition 3.2.6. Define

_ x'
Un = yn — QnUj < > —n,

hX3

1 x'
Cp = @ /Q <]/h - QhU] (hX3>) dx.

Using the test deformation
x! x!
(xS) e (hx3)

and the assumption (3.10), we get inf, Ji'(y) < Ch'=7, so that

Ji(yn) — CH'™7 < Ji(yn) — inf Ji(y) = o(1) = Ji(ym) < Ch'™.

where
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We have

~ x/
WEL ) = W) + [ fTndx+ [ fi- Qi (0> dx
< CH Y 4 CHY Y|V 7| 1o

(3.45)

Consider the set
Qh = {x e O dist(Vhyh, K) > 1}.

By Proposition 3.2.6 and Remark 3.2.7, we deduce
190l fs = [ IVhn = QuUl7dx < Cn2 [ dist! (7, K1) d
< Ch2 / dist! (Vyn, K) dx + Ch2
Q (3.46)
< Ch? / dist? (Vyyp, K) dx + Ch2
Qy
< CH*2E}(yy) + Ch 2,
where we have used (3.1). Combining (3.45)-(3.46) we get
HYES (y) < CHTH 4 CHY P T (RES ()1 + CHY 0,
Recalling that g > 1, by Young’s inequality we deduce that
EER (yy) < CHH + cnf 0 et o,

Hence, we can apply Proposition 3.2.1 and deduce that, at least along a sub-
sequence, there is an index jy € {1,...,1} such thatforh < 1

/Q dist?(Vyyp, K0) dx < B[E} (y) + (E5 (y))°).

We now show that Ej (y;) < C. To simplify the exposition, we suppose that
jo = j. By Proposition 3.2.6 we have

174172 < CIVILIT2 < Ch2| dist(Viys, K172
< Ch*2[Efj(yu) + (Efi(y))°]-

Pick Ry Uy, € M, and define

(3.47)

. 1 1 . x'
) = B — g [ fievx e [ R, () ax
Note that yj, are quasi-minimizers for the functional J#. Moreover, using the test

deformation . ,
X _ x
<x3> = Rull, (hx3) ’

we get inf, fff (y) <0, so that

T (vn) < T (yn) —ir;ffﬁ(y) <C.
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Hence,
o o 1 1 s x! /
Ej, (yn) =Ih(J/h)Jrhj/th'yhdx—hj/sfh'RhUkh o) dx
o 1 ~ 1 B x' /
= T+ [ e+ gr [ (Qul = Rully,) () dx
1
< C+Ch " Y full 2 (B (v) + (Efr(wa)?)?
0
2

< C+ C(EX(yn))? + C(EL(yn)) 2,

where we have used (3.47) and the definition of M},. Since 0 < 8/2 < 1, by an
application of Young’s inequality we conclude. O

We are in a position to conclude the proof of Theorem 3.1.6.

Proof of Theorem 3.1.6. By Lemma 3.4.1 and Theorem 3.1.1-(i) there exists j €
{1,..., 1} and y € Wéfgj(s;mff) such that, up to a subsequence, (V,y;) —

(V'y v)in L?>((;R3>*3), where v is defined as in Lemma 3.2.8. Let

1
=— d

and define i, := yj, — c;. By an application of the Poincaré—Wirtinger inequality,
we deduce that 7, — y in W'2(S;R?). By the strong convergence of h~2f, and
(3.11), we get

1 1

_ 'd:—/ -”d—>/~d.

hz/fhyhxhz fuo-Gndx = | f-ydx
By Theorem 3.1.1-(ii) we deduce that

lim inf Jj (yn) > Ef (y) - /Sf -y dx = JX(y).

Now leti € {1,...,l} and 7 € Wizs'g,gj(S?R3)- Let () be the recovery sequence

for i provided by Theorem 3.1.1—(iii). Then
J{(y) < liminf J7(y,) < limsup J;(y,) = limsup (inf Jj(y))
h—0 h—0 o Y
< limsup Ji(7,) = lim Ji(7) = Ji(9),
h—0 h=0

concluding the proof. O
We move now to the case & > 2 proving Theorem 3.1.8.

Proof of Theorem 3.1.8. By Lemma 3.4.1, we have Ef!(y;) < C. Let Ry, uy, v, and
j € {1,...,1} be the sequences and the index given by Theorem 3.1.3-(i). Up to
subsequences, we have Rj, — R in SO(3). We prove that RU; € M. This will also
show that j € A. Indeed, let RU) € K and define

/
yh(x//x3) = Ruk ( * ) .

hx3
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We get
Tn (yn) — ilylflii‘(y) > Ju(yn) = Ji (Fn)

/fh ypdx + — /fh Ruk( )dx

_ S 1 max{h7,h27’2}uh
__hj/ﬂfh.Rhu]. ( Wiy, dx

1 _ x!
+h7/0fh'(RUk7Rhu]') 0 dx.

Multiplying by h7~! and passing to the limit we deduce that

/f (RUy — Ru)( )dx<0
where we have used convergence (3.10). Since RUj € K is arbitrary, we have
RUJ e M.
By Proposition 2.2.20, the projection P} (Ry,) is well-defined for i < 1. Let
Wy, € Rg’?eiv with |[Wj,| = 1 be such that

(3.48)

J (7 j
Ph(Rh)Wh S NRth(R )
and R, := P](Rh) Wi, where d), := d1stso( )(Rh,P]( 1)) Then, by (3.48) with
RUy = Pl (R, )U; and the fact that Fh(Pj (Rp)WyU;) = 0 (see Section 2.2.3) we have,
expandmg the exponent1al map,

Ji(yn) —inf J3(v) > i on) — I (P]<Rh>“ ( . ))

hx3
(3.49)

d3
_~_"h j
C /fh Pl (Ry) WAL dx+O<m )

Clearly Pl (R;,) — R. Moreover, up to subsequences, W;, — W and owing to
Lemma 2.2.17, RW € NR7 thus F(RW?U;) < 0. We deduce by (3.49) that dj; =
O(h"~1). In particular, there exists B > 0 such that h!~7d? — B2 and so

2

d, 2
1or-1)

h3(r=1)

h%(1*7)(1_{h _ Pli(Rh)) = P](Rh)wh +0 < ) — BRW.

We are left to prove the minimality property. We show it for 2 < & < 4. The
other cases can be proved analogously. Firstly, note that

/fh yhdx—h—a w(P (Rh —>/f RU Lesvdx — (,BZRW2 )

Indeed we have the equality
W22y
j h
/fh yndx — F(P,(R,)Uj) ha/fh RyU;! (m—lvh> dx

/ Fu- ( — Ry (’6’) dx.
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The first term behaves as follows
1 — 1 hz’)/_zuh o 1 _ 1 h'V*luh
W/th'Rth (hv—lvh dx_/oh”ﬁlfh'Rhuf oy A
— /f : Rujflegvdx.
S

On the other hand, since Fh(P;;(Rh)Wh U;) = 0, we have

hth(P (R, )Uj):ﬁ/ﬂmfh?h(lzh)whuj o) dx+o (2t
that converges to F(82RW? U;). Thus, by Theorem 3.1.3—(ii) we have

lim inf(Jj; () +F(P[(Rp)Uy)) > J<VK (v, R, pW). (3.50)

Take an admissible quadruplet (i, 9, R, W) and let #, be the recovery sequence
for @ provided by Theorem 3.1.3—(iii). By Proposition 2.2.19, we can construct a
sequence of rotations R, converging to R such that R;, € R} . Note that, by (FI),

E (71) = Ejy(Rutn),
so that Ef (R, §,) — ESVX(9). Moreover,
1 hZ'nyﬁh
I / fu- Rhyh_ﬁ W (RpU;) = /fh Ryu; (h”lﬁh) dx
— /f~RUlf163z7dx,
S

where iy, 7), are defined as in (3.3)+3.4) with §; and U; in place of y;, and U;,
respectively. By hypothesis (F!), we have that R,U; € M, for h < 1. Thus,

Fy(Py(Rp)Uj) = Fy(RyUy),
and F(R(W)2U;) < 0. Hence, by (3.50) we deduce that
]Wﬂuﬁmw%ﬂ?$%WW),ﬂﬂﬁmw%0

< limsup (],‘f(yh) i (P](Rh)u)>

h—0

= limsup |( i < Fh(Pp];(Rh)uj))
h—0

< limsup ( (Rygn) + Fh(Rhui)>
h—0

_ JSVK(5,R,0) < JEVK(0, R, W),

that gives the minimality property. O






Stability of the Von
Kéarman’s regime under
Neumann boundary
conditions

4.1 Assumptions and main results

As in the previous chapter we assume S C RR? to be an open, bounded, and
connected set with Lipschitz boundary, representing the mid-plane of a plate. The
elastic energy density WV is defined on IR%*3 and has a single-well structure. Thus,
we use the notations presented in Section 2.1, dropping whenever possible the
dependence on the well. Recall that in the single-well case we have [ := 1 and
U; := Id. We assume that WV satisfies the quadratic growth condition

W(M) > Cdist?(M,SO(3)) VM e R>3.

In particular, (2.8) holds.
We assume the applied forces to be of the form

fu = h2f, (4.1)

with f € L2(S;R®), f not identically equal to 0.
The total energy for a deformation y € W'2(Q);IR®) is written as

In(y) = Ih(y)—/th~ydx:/()W(Vhy)dx—hz/ﬂf-ydx

We suppose that
/ Fdx' =0 4.2)
S

81
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to avoid the trivial case in which the total energy has no lower bound.

In this chapter, we use EX, ECVK and EVK to denote the same functionals
we have defined in Chapter 3. However, since there is a single well, we drop
the subscript denoting it. Moreover, we repeatedly use the compactness and I'-
convergence results of Chapter 3 replacing Ej; with D, 1, where D, C R" is an
infinitesimal sequence such that D), = O(h?). Indeed, as we already observed in
Remark 3.1.5, these results hold in the single-well case also without penalty term.

Finally, we define the total energy in the Von Kédrman’s and Kirchhoff’s regimes,
respectively, as

s () - ()

- /S £-RW2 (’g) dx’,
) = E¥w) — [[f-yax'

The first functional is defined for every (u,v) € W'?(S;R?) x W?2(S), R € R
and RW € NRpy (see Section 2.1 for a definition of R and NRg). A quadruplet
(u,v,R, W) as above is called admissible. The Kirchhoff’s functional is defined for
every y € Wizs’g(S;]I{3).

Note that, differently from Chapter 3, in the total energy we have a contribution
of the in-plane displacement u. This stems from the fact that we are choosing a
different scaling for the loads, precisely h? in place of h®.

These energies can be interpreted as the I'-limit of the corresponding rescalings
of J,. However, the I'-limit result alone is not satisfactory, since we lack the
corresponding compactness properties for sequences with bounded total rescaled
energy.

Similarly to the Dirichlet case treated in [LM09], an exclusion principle in-
volving the stability of ]V and JX can be used to study the limit of minimizing
sequences in the Von Kdrman’s regime. In our setting, these stability conditions
read as follows:

/
(S1) J¥(y) > 0 for every y € W>*(S;IR3) and, if J¥(y) = 0, then y = R (x ) for

iso 0
some R € SO(3),

(S2) JV&(u,v,R,W) > 0 for every admissible quadruplet (1, v, R, W) with (1,v) €
B}in and, if IVK(M, o, R, W) = 0 for some (u, zJ) c Blin then v is affine,

iso iso”’

where

B_lin —

150

{(u,v) c WH(S;R?) x W22(S) : Vul +Vu+ Vo Vo =0 a.e.}.

Conditions (S1)—(52) have to be interpreted as follows: whenever a deformation
minimizes the (non-negative) total energy then it must be a deformation with zero
elastic energy. In our framework, if (S51) holds, then the following compatibility
condition is in force:

RTf.e3=0, VReR. Q)
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This is the main statement of Theorem 4.1.2. Compatibility condition (C) is the
rotation invariant generalization of the usual assumption on the scaling of the
normal component of the forces, see for example [F]JM06]. Indeed, the standard
requirement f}, - e3 = O(h?) in our setting translates to f - e3 = 0 (see (4.1)). As
illustrated in the following example, condition (C) can be satisfied by very simple
loads, despite seeming very restrictive.

Example 4.1.1. Consider S := (—1/2,1/2)? and f = xje3. A quick computation
gives
1
F(R) = 55 Rs1,
thus, R = {R € SO(3): R3; = 1}. In particular for any optimal rotation R € R we
have RTe3 = ey, so that RTf - e3 = (x; —1/2)e -e3 = 0.

From now on, unless otherwise stated, (y;,) C W?(S;R3) denotes a quasi-
minimizing sequence for h~*];,, namely

1
limsup (Myh) - inffh@)) —o. (43)
h—0 y

Theorem 4.1.2. Assume that (C) is not valid. Then (S1) fails. Moreover, up to a sub-
sequence, every sequence (yy,) of quasi-minimizers in the sense of (4.3) converge strongly

/
in WI2(Q;R%) to a minimizer j € W22(S;R3) of J< with j # R (36) for every
R € SO(3).

Theorem 4.1.2 shows that in the purely Neumann case, some forces are incom-
patible with the Von Kdrmdn's regime. In particular, if (C)is not in force, the energy
of any sequence of quasi-minimizers as in (4.3) scales like /%, namely

o1
0< hglgﬁﬁEh(yh) < +o0.

Next, we state the stability alternative analogue to [LM09, Theorem 4].

Theorem 4.1.3. Let (y,) C W'2(S;IR®) be a sequence of quasi-minimizers in the sense
of (4.3). Suppose that conditions (S1)~(S2) hold true. Then limsup,, _,,h=*E;(y;) < C
and there are sequences (Ry,) C SO(3) and (c;) C R3 such that, setting

yh = ngh =+ Cp,
we have the following convergences (up to a subsequence):
(@) uy = ]1172/(% —x') dxs — it in W2(S;R?),
I
@)W::%/gmdm—»mnwmﬁ)MM5eMﬂ%ﬁ,
I

() R, > ReR,
(d) ht (P(Rh) — Rh) — RW with RW € NRgz,
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where P : SO(3) — R is the projection onto R. Finally, the quadruplet (i1, 0, R, W)
minimizes JVK.

Similarly to [LM09, Theorem 6] we can show that (S1) and (52) are in a relation-
ship, with the former being essentially stronger than the latter.

Theorem 4.1.4. Suppose that (S1) holds. Then JVX(u,v, R, W) > 0 for every admissible
quadruplet with (u,v) € BN, Moreover, (S2) holds for the functional

Y¥(u,0,RW) = E(u,0) — (1—¢) | f-R (o) 4

—(1—5)[5f-RW<2> dx’—(l—s)/sf-RWZ <’g> dx’

for every e € (0,1).

In general the previous result does not hold when ¢ = 0. Indeed, one can only
deduce the positivity of JVK but not the triviality of the minimizers.

The stability conditions are deeply linked to the attainment of the infimum of
JVK. Indeed, we prove the following.

Theorem 4.1.5. Suppose that the stability condition (S2) and the compatibility condition
(C) hold true, and that dim R = 1. Then JVX attains its minimum over all admissible
quadruplets (u,v, R, W). Instead, if (S2) fails, then for every ¢ > O the infimum of the
functional

YK(u,0,R,W) == EV¥(u,v) — (1 +¢) /Sf-R (g) dx’

f(1+e)/sf-RW (2) dx’f(1+s)./5‘f'RW2 (’6’) dx'

is —oo0.

As for Theorem 4.1.4, also Theorem 4.1.5 might not hold for ¢ = 0 (see also
Remark 4.3.5). Roughly speaking, this result means that the load f is critical, i.e.,
as soon as the load increases the Von Karman’s model ceases to be valid.

Remark 4.1.6. In Lemma 2.2.22 and Remark 2.2.23 it is proved that the dimension
of R is either zero or one. Theorem 4.1.5 holds also in the case dim R = 0. However,
if R is a singleton, our setting reduces to the one in [LM09]. For this reason, we
only give a sketch of the proof for the case dim R = 0 (see Remark 4.3.6).

To prove Theorem 4.1.5 a careful analysis of the invariance of | VK along affine
perturbations is needed.
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4.2 Stability alternative

The aim of this section is to prove Theorem 4.1.2—4.1.4.

In our arguments, we often compare the quasi-minimizing sequence y;, (in the
sense of (4.3)) with carefully chosen test deformations f;,. Indeed, we have

Jn(yn) = Jn(9n) = irylf]h(l/) — Ju(9n) + o(h*) = o(h*). (4.4)

Passing to the limit in (4.4) we deduce relevant properties of the quasi-minimizing
sequence yy,. The test deformations 1, we use are inspired by the recovery sequence
construction of [FJM06] and are similar in spirit to the recovery sequence we used
in Chapter 3. For this reason, we refer to Chapter 3 for the explicit computation of
their elastic energy.

In order to prove Theorem 4.1.2 it is crucial to have at our disposal the following
result, relating the energy scaling of y;, and the compatibility condition (C). Here,
and in the rest of the section, we denote by (D;,) C R™ an infinitesimal sequence.

Theorem 4.2.1. Suppose that limsup,,_,, D, 'Ej(yy,) < C with Dj,/h* — 0. Then (C)
is in force, i.e., RT f - e3 = 0 for every R € R.

For a quasi-minimizing sequence as in (4.3) we have that Ej,(y;,) < Ch? (see the
proof of Theorem 4.1.2). Thus, Theorem 4.2.1 equivalently ensures that the elastic
energy of yj, scales like h? when (C) does not hold true.

To prove Theorem 4.2.1 we proceed by steps, one for each possible limit of
Dy, /h*. Every case corresponds to an elastic energy regime. In each step we
compare the quasi-minimizing sequence y; with test deformations having the
same elastic energy scaling.

The first part of the section is thus devoted to the proof of Theorem 4.2.1. Once
Theorem 4.2.1 is established, we move to the proof of Theorems 4.1.2 to 4.1.4.

We start by proving that, if we are in the Von Karman’s energy scaling, the
quasi-minimizing sequence y; converges, up to a subsequence, to a rigid motion
given by an optimal rotation.

Lemma 4.2.2. Suppose that Ej,(y,) < CDj, and Dy, /h?> — 0. Let (R,) C SO(3)
be the sequence of rotations provided by Theorem 3.1.3—(i). Then, up to a subsequence,
Rh —ReR.

Proof. Let Ry, uy,, and vy, be the sequences given by Theorem 3.1.3—(i). Up to a
subsequence, R, — R for some R € SO(3). To prove that R € R pick a rotation
R € SO(3) and consider the test deformation

gn(x, x3) == R ( x ) . (4.5)

hX3
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The elastic energy of 7y, is zero, so

In(yn) — In(9n) Z/th'?hdx*/ﬂfh'}/hdx

. Dy, Dy, / h?
= [ R, (max{;%;h }”h> dx’

+h2/5f~(R—Rh) <9g) dx’.

Here, we have used that f does not depend on x3 and the symmetry of (—1/2,1/ 2)

to deduce that
/f R(x3) dx_/f Rh< )dx_o

Dividing by #? and passing to the limit we deduce by (4.4), Theorem 3.1.3—(i), and

Remark 3.1.5
0>/f (R —R) ( )dx

which gives R € R. O

Proof of Theorem 4.2.1. The proof is divided in three steps, one for each possible
elastic energy scaling. Let Ry, uj,, and vy, be the sequences given by Theorem 3.1.3-
(i). Up to subsequences, R, — R in SO(3), with R € R by Lemma 4.2.2.

Step 1. We start by considering the case where Dj,h~* — 0. Let R € R and
consider the test deformation

/ —h2 T
9z, x3) =R (hx3> +R ( szv ) . (4.6)

By the same computation done in the proof of Theorem 3.1.3—(iv) we have that
Ey(9;,) = O(h*). Comparing the quasi-minimizing sequence with the test deform-
ations and using that R € R we get

Jiy) = Tu(@1) 2 OY) + [ fi-gndx = [ fi-
o) /fh Rh( Cﬂ )dx’+/sfh-(R—Rh) (’g) '
+/fh-R(hv> dx’
o(1%) +h3/f R<)dx—hf/f Rh< )

Dividing by /3 and passing to the limit, by (4.4) and the fact that Dyh~* — 0 we
deduce that

4.7)

OZ/Sf-R(2> dx'  VYReR,VoveC®(3),

and by density the same holds for every v € L2(S). Since the map

ve L%(S) — /SRTf~ (2) dx’
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is linear it must be identically zero, that is, RT f - e3 = 0 for any R € R.

Step 2. We move now to the case where D,h~* — D > 0. Let R € R and
v € C®(S) and consider again the test deformation §, as in (4.6). Arguing as in
(4.7), we deduce that

) = 10n) =07 [ 7R (3) @' =hy/Dy [ 7R () ) v’ +008).

Dividing by h® and passing to the limit we deduce by (4.4) that

0>/f R(>dx\ﬁ/f R()dx YRER, Vove C(8),

and by density the same holds for every v € L2(S). Arguing as before, we conclude
by linearity.

Step 3. Finally, we discuss the case Dyh~* — +o00. Let v € C®(5) N Aget
(see Section 2.2.2 for the definition of Aget). By Theorem 2.2.10 there exists i, €

W2°(S;R?) such that
N . x hizDhﬁh
yh(x) T (0> + (hlmv
is an isometric immersion, i.e., V'§] V'§, = Id. Note that by (2.12) and the fact
that h~1\/Dj;, — 0, we have [|il;||y2~ < C. Let R € R and define
9n = Ry + hxzRvy,

where vy, := 917, A 02,. Arguing as in the proof of Theorem 3.1.3—(iii) we have
E,(9,) = O(Dy). Comparing the test deformation §;, with the minimizing se-
quence, using that R € R, and that (2.12) holds true, we get

In(yn) = In(9n) > /fh hdx—/fh ypdx +O(Dy)

/fh Rh<h Dhuh)d +/fh (R— Rh)(()/)d/

+/fh (h Dh”h>dx’+O(Dh)

zh@/sf-R<v) dx’ —h\ﬁ/f Rh< )dx +0(Dy).

Dividing by h+/Dj, and passing to the limit we obtain that for every R € R and for
every v € C®(S5) N Age; we have

02/5f~R<2) dx/—/sf-R(g> dx', 4.8)

Since S satisfies condition (2.17), Corollary 2.2.13 ensures that (4.8) actually holds
for any v € Ager. By Lemma 4.2.2, R € R, hence, choosing R := R we have once
again that  maximizes the linear map

v+—>/SRTf~ (2) dx’
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on Aget. Note that Age is not a linear space. However, if v € Age, then Av € Aget
for any A € R. Therefore, we conclude that

/RTf-(O> dx' =0 Vv € Ager
S v
Going back to (4.8), we deduce that
0\ .
ozAszv dx'  VYRER,Vve Agr
Hence, by linearity the same holds for every v € span A4, where the closure is
taken in L2(S). The conclusion follows from Theorem 2.2.14. O

The rest of the section is devoted to the proof of Theorem 4.1.2—4.1.4.

Proof of Theorem 4.1.2. Firstly, observe that J;,(y,) < Ch?. Indeed, using the test
deformation (4.5) we have

/
inf () < (o) = 2 [ R () ¥ < i,
S
By Proposition 3.2.6 there is a constant rotation Q;, € SO(3) such that

IV iyn — QullZ2 < Ch™2Ey(yy).

We now define /
_ X
yw=%%—( )+%

hJC3

where ¢y, is chosen so that §;, has zero average. By Poincaré-Wirtinger inequality,
one obtains a bound from above on the elastic energy as follows

Ea() = Do)+ [ fo-vudx <O+ [ F-Quindx+12 [ f- (o> ax

< CH? + CH2||Vyn — Qullj2 < Ch* + Ch(Ep(yy)) 2.

Nl—=

Thus, by a simple application of Young’s inequality, we get Ej, (y;,) < Ch?. Assume
now that RT f - e3 # 0 for some R € R. It follows that

|
h{f;%‘fﬁEh(Vh) =e>0,

otherwise, defining Dy, := Ej(yy), by Theorem 4.2.1 we would conclude that
RTf-e3 = 0 for every optimal rotation R € R, contradicting the assumption.
By Theorem 3.1.1—(i), there exists j € Wﬁf(s ; ]R3) such that, up to a subsequence,
yp = Jin WH2(Q;R®) and V,,y, — (V'§ v), where v := 917 A 9,7. By a standard
I'-convergence argument, being y;, quasi-minimizing, we deduce that

1
23 In(yn) = J5(7) = inf <.
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In particular, since the loading term is continuous, we deduce by the I'-convergence
of h=2E), that

1
= En(yn) = E<(7) =¢ > 0.

xl

This implies that 7 # R < 0

) for every R € SO(3), so condition (S1) is not satisfied.
O

We move now to the proof of Theorem 4.1.3.

Proof of Theorem 4.1.3. The proof follows the steps of [LM09, Theorem 4]. Arguing
as in the proof of Theorem 4.1.2 we get Ej,(y;) < Ch?.

Step 1. Firstly, suppose by contradiction that h=2E,(y;) — e > 0. In this case
we can argue as in the proof of Theorem 4.1.2 to deduce that yj, — 7 in W2(S;R3),
EX(7) = e > 0and JX(§) = 0 contradicting the stability condition (S1).

Step 2. Suppose now that h=2Ej,(y,) — 0and h=*E;,(y;,) — -+o0. We show that
this gives a contradiction. Set Dy, := Ej,(y;,). Let R, uy,, and vy, be the sequences
given by Theorem 3.1.3—(i). By Lemma 4.2.2, up to a subsequence R, -+ R € R
thus, at least for 1 < 1, the projection P(Rj,) of Rj, onto R is well-defined. Define
dy, == distso3)(Ry, R) (see (2.5) for the definition of distsn3)). Let W, € RIS
such that P(R,)W), € NRp,), [Wy| = 1, and R, = P(Ry)es™r, Recall that
NRp(r,) is the normal space to R at the point P(Ry,) (see (2.3) for the definition of
normal space). By Lemma 2.2.17, up to a subsequence, W, — Wy with |W;| =1
and RW; € NRy. Indeed, in the setting of this chapter, (F?) is trivially true since
Ry = R for every h.

We now show that d, = O(h™1y/Dy,). Let v € Aget N C®(S) and if;, € W>>(S)
given by Theorem 2.2.10 so that the map

/ -2 ~
ooy (X h==Dyiy,
)= () + (2 )
is an isometric immersion. Note that, since h~1,/ Dj, — 0, we have the uniform
bound ||i||y2~ < C. Consider the test deformation

U = P(Rp,)§y + hxsP(Ry,)vy,

Reasoning as in the proof of Theorem 3.1.3-(iii), we have E;(§;,) = O(D},). Thus,
Tn(yn) = Tn(@n) = /th “Gndx — /th “Ypdx +O(Dy)
__ [ Dyuy, / z/ . _ X\
= /Sf Ry, (h@0h> d +h” | f (P(Ry) = Rp) {7 ) dx (4.9)
+/f~P(R ) (L Prin Y gy 1 o(Dy)
S f h\/DhZJ hi-
As showed in (2.20), we have that

x/
/Sf -P(Ry)W (0) dx' =0  VYWeRYS. (4.10)
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Expanding the exponential map e%1", recalling that by Theorem 4.2.1 we have
P(Rh)Tf -e3 = 0, and using both (2.12) and (4.10), we get from (4.9)

Jolw) ~ Inn) 2 h2d2/f PRaWE () v
+h\ﬁ/f Rh)( )dx +O(Dy, )
> hde/f PRh)Wh( )dx
—hdh\ﬁ/f P(Ry) wh< )dx +O(Dy, 123, I/ Dyd?).

Suppose by contradiction that hd), / /D), — +oo. Then dividing (4.11) by h?d> we
get

(4.11)

Un(yn) = Tn(Gn)) /f P(Ry, Wz( )d’

- 0 4y vDy
- /f P(Ry) Wh< >dx +o<dh,h2d2, . > (4.12)

Note that, by (4.4) we have

h2d2

, . ) D, K1 .
hrrhljélp » dz Un(yn) = In(n)) = hnhnjyp 242 D, I (Jn(yn) = In(gn)) < 0.

Passing to the limit in (4.12) we deduce that

0> — /wa1< >dx>0

where the last inequality follows from the fact that RW; € NR and Wy # 0 (see
(2.3)and (2.20)). This gives a contradiction and proves that d;, = O(h~1/Dy,).

To conclude the proof of Step 2 we show now that condition (S2) is violated,
getting a contradiction. Set

W = lim ———d, W,
lim ——= \ﬁ Wi
Since RW; € NR; we have RW € NRy. We have that

5l + IRE(P(R,)))
= 2nt - [ s+ [ () o
s+ 3, 10 = (7) o

/f (hl\?ﬂzh) dx’.
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Expanding twice the exponential map, recalling that P(R;,)T f - e3 = 0, and by
(4.10) we get

5 (o) + F(P(R,)))
- S, h“/prhthdf [ror ()
F/f ~Ry) ( h) dx’ +o<h;i3>
- L ryw h“/prhWh()df Lrora('y) o
hdh/f PRhWh( >dx o(ﬁ,j‘%).

We denote by ¢ and # the limits of vj, and uy, respectively. Note that by The-
orem 3.1.3—(i), (i1,0) € BIn. Since by definition D, YEu(yy) — 1, passing to the

limit we get by Theorem 3.1.3—(ii)
o1
timinf - (Ji () + F(P(Ry)))

:1/Sf.1‘z(g‘) dx’/gf-z‘zw@) dx’ (4.13)
_ /Sf.RW2 <’6/) dx' > V¥(i,5,R, W) > 0

where the last inequality follows from (S2).
Let §;, be the test deformation in (4.6) with v € C*(S) and R € R. Reasoning
as in the proof of Theorem 3.1.3—(iv), we have that Ej,(9,) = O(h*), hence

Dih(]h(gh)JthF(p( ) < ——/f R< ) dx +o(g;) —o({i) 0,

where we used that F(P(R,)) = F(R) for every R € R and that RTf - e3 = 0. In
particular, by the quasi-minimizing property of yj,

timsup 5-(Jy (1) + PF(P(Ry))) < limsup (T (1) = (1)) = 0.
h—0 h—0 h

Hence, all the inequalities in (4.13) are in fact equalities, and we have EVK(#1,5) = 1
and JVK(i,5,R,W) = 0. Since (11,3) € Bil;r(‘), this contradicts (52).

Step 3. By the previous steps, we obtain that Ej,(y;,) < Ch*. Define dj, and W,
as in Step 2. We prove now that d;, = O(h). The argument is similar to the one
already seen. Consider the test deformation (4.6) with v € C®(S) and R := P(Ry,).
Arguing as in the proof of Theorem 3.1.3—(iv) we have Ej(7,) = O(h*), thus,
expanding the exponential and recalling that F(RW) = 0 for every R € R and
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W e ]R3><3

skew

JnCyn) — In(in) Z/fh'?hdx—/ fn - yndx + O(h*)

f—hz/fR ( )dx+h2/f Rh)<0/)dx’

+h2/f-P(Rh) (h ) dx' + O(h*)

+h3/sf-(P( —Ry) (Z?h dx' + O(h*, h2d3)

—hzdﬁ/f.P(Rh W2 ( > ¥

—h3dh/f P( Rh)Wh( ) dx' + O(h*, i2d3, 13d2).

X
> h2d2/f P(Ry)W, O) dx’ (4.14)
d

Suppose by contradiction that dj,/h — +oco. Then, dividing (4.14) by h?ds and
passing to the limit we deduce that

/f RWl( >dx>0

where the last inequality follows from the fact that 0 # RW; € N'R . This provides
the desired contradiction.
Define as before

] d,
W= lim 2Ew
li’%h he

Finally, expanding the exponential map

72 Us) + IRF(P(R)) =

= %Eh(yh) —%/Qf‘yhdx’—i—%/f'P(Rh) (96/) dx’

— peBul) + g £ @R~ R () a5 [ 5y (1) av

= st [reprw () @~ [ror, (1) @
+%/5f' (P(Rp) = Rp) (Z?h> dx'+0 (ZE)

1 d% 2 x /
= iBnm) = 3k [ £ PROWE (7)) dx

rera () ay [y 0 g o (% %
/Sf Rh<0> dx I .Sf P(Rh)Wh (Uh) dx +O<h2, n
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so that
lim inf -7 (Ih(yh) +1F(P(Ry))) > JV5(%,9,R, W).
Let (u,v, R, W) be an admissible quadruplet. Construct a recovery sequence
(7y) for u and v as in Theorem 3.1.3—(iv)—(c). The sequences of rescaled displace-

ments for the recovery sequence, defined as in (3.3)-(3.4), are denoted by ii;, and 7j,.
We have

VX (8,0, R W) < Timinf oo (Ju(ys) + F(P(Ry)))
5 (0614 (0) + IRF(P(R)))

< hm 'SUp 1 (]h( "Wg,) + HE(R)).

To conclude it is sufficient to prove that

lim sup -7 (Ih( "Win) + F(R)) = JV%(u,0,R, W).
h—0

Expanding the expression of |, we have
1 W 5 2 1 W 1 W
7 UN(REM )+ IPE(R)) = 1 EW(RE™M ) = o [ - R, ax
1 x
+h2/sf~R<0) dx’
1, 1 h2ii 1 x!
= ﬁEh(yh)—ﬁ/f.RehW <h6h> dx’+h—2/f-(R—RehW) (O) dx’'
h4 /fRehW(>dx—/fRW()d
/f RW2< ) dx' +O(h) — JV¥(u,0,R, W),

ending the proof of the minimality. O
We conclude the section by proving Theorem 4.1.4.

Proof of Theorem 4.1.4. Suppose by contradiction that there exists an admissible
quadruplet (i, 7, R, W) such that (i7,9) € B};‘g and JV&(%,5,R,W) < 0. Let 6 > 0
and ¥ € C®(S) such that ||7 — 7| y22 < 8. Let 1 > ¢ > 0. By Theorem 2.2.9, there
is ue € W22(S;R?) such that

()= (7 )

£0

is an isometric immersion and

luellwaz < € (V'3 1 (V)28 12 + 197312, ) -
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It follows that along a non-relabelled subsequence 1, — u in W2?(S;1R?) for some
u € W22(S;R?). Moreover, since V'y! V'y, = Id, we have

0= (Vul + V' + V'3 V') +0(e2),

where 0(¢?) has to be intended in the L? sense. Dividing by ¢? and passing to the
limit we deduce that (u,9) € Bin. Moreover,

sym(V'u — V') =2(VoeV's—- Voo Vo)
=2(V(6-0)@V's-V'ox V' (o-17)).

Hence, by Korn’s inequality, there exists A € R%22 and 7 € R? such that

skew

|lu—a— Ax" — 5|2 < C6. (4.15)
Consider the deformation

yﬁ(xl) = Reswye € Aiso-

oW eV'u
PR (o e+ (2T))

— 7. A Doij _ P W _ v'oT 2
Ve = 017¢ A 02 = Re ea—el g +0(¢e%).

It follows that

We have

and

V've = —eRetW <(V’)Zz7> +0(€2)

and
(V'7e)TV've = —e(V")25 + O(?).
Thus, by condition (S1),

0< ) = [ OUV'7) V') dx' — [ f-ged
:szfsQ((V/)zﬁ)dx’—/sf-Resw (3(()’) dx’—s/sf~Re£W (g) dx’
—52/5f~Re£W <lg‘) dx’ + o(?).

By Theorem 4.1.2 we have R f - e = 0. Expanding the exponential around the
identity and recalling that F(RW) = 0 for every W € R%3 | we get

0< () <& [ QUTPa) ¥~ FR) & [ £ ROW2 () v

—82/5.f~RW (g) dx’—ez/sfj? (Lg) dx' + o(€?).
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Dividing by €? and using the fact that F(R) > 0 by Lemma 2.2.24, passing to the
limit we deduce that 0 < JYX(u, 3, R, W). Hence, by definition of 7 and (4.15) we
get

/!
0< ]VK(ﬁ,ﬁ,R,W)+/f~R (Ax0+ '7> dx' +Co = J¥¥(w,5,R, W) + C,
s

where in the last equality we have used (4.2) and the fact that F(RW) = 0 for every

We Rglfe?/v' Since ¢ is arbitrary we reach a contradiction.

We now prove that (S2) holds for JYX. Suppose that there is an admissible
quadruplet (i1, 9, R, W) such that (i,9) € B};‘c‘, and JYX(a1,5,R,W) < 0 for some
€ > 0. We show that 7 is affine. Let

K= [ (g) t+ [ FRW (2) '+ [ ROVY? (g) ax'
If K <0, since
0> J¥&(a,5,R,W) = EY¥(#,5) — (1 —¢)K > EV¥(1,9),
we get that EVK(11,5) = 0, thus, 7 is affine. Conversely, if K > 0 we deduce that
JVK(i,5,R, W) = JY®(i1,5,R, W) — eK < 0,

which gives a contradiction. O

4.3 Attainment of the infimum of JVX

In this last section, we prove Theorem 4.1.5. The stability condition (S2) assures
that all configurations in BLR with zero total energy have zero Von Karman's elastic
energy, i.e., v is affine. However, we do not expect that all affine functions have
zero total energy, unless f = 0. In the following series of results, we study the
specific structure of such affine minimizers. We recall that we assume f not to be
identically zero. Given an optimal rotation R € R, in the following results we

often use the coefficients a(R), b(R), and c(R) as defined in (2.21)~2.23).

Proposition 4.3.1. Suppose that (S2) and (C) hold, and dim R = 1. Let (u, v, R, W) be
an admissible quadruplet such that (u,v) € BN and JV¥(u,v,R, W) = 0. Then W =0

10

and thereare A,6 € R, € R?,and A € R%*2 such that, ifa(R) > 0, then

skew

o(x') = —/\C(R) X1+ Axy +6,

a(R)
A2 @xl - c(R) 2
u(x') = Y a(Rg(R) a(R) + Ax' +1,

———X1+ X2

a(R)
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whereas, if b(R) > 0, then

¢(R)

o(x") = Axy — )\mxz +9,
A2 X1 — @xz
u(x'):—? ¢(R) b(R[z(R) + Ax' +71.
TR T R

Proof. The stability condition (S2) implies that v = Ax1 + Axxp + 4. Since (1, v) €
Bin we deduce that

1so’
1/ A2 MA X
N — = 1 112 1 !
u(x') > </\1/\2 A% > (xz) +Ax 41,

2x2
skew”

for some 7 € R? and A € R%*2 . Now for any A € R

skew 7€R? and é € R we
have

V¥ (u+ Ax' + 17,0+ 6,R,W) = V(1,0 R, W).

This follows from assumption (4.2) and the fact that F(RW) = 0 forany W € IR:kXe%v.
In particular, we can suppose A, J, and 7 to be zero.

Suppose a(R) # 0 (the proof for the case b(R) # 0is analogous). We writea, b, ¢
inplace of a(R),b(R), c(R) in order to streamline the exposition. By Corollary 2.2.27
in this case W is of the form

0 Wio CW13
w=| W 0 EWB

C
—Waz —Ewls 0

Let us define P(W) = F(RW?) and Jmin := JVX(u,v, R, W). With some simple
expansion (recall that ab — ¢* = 0 by Proposition 2.2.26, since f # 0) we have

1 )\%xl + AAxx0
Jmin = 5 /Sf -R | AAnxq +/\%x2 dx’

0
/ 0 Wi Wis 0 /
- fR —W12 0 %ng, < ) dx —P(W)
Ax1 + Axx

b
(/\%Iil 4+ 2A1 A + )\%b) — )\1W13(1/'l + b) — A Wisce (1 + a) — P(W)

N =

If we define

_ (4 ¢ — a+b _ (M
M = <C b), B = W13 (C(1+Z>>’ A = (/\2),

then we have

%ATMA — BA — P(W).

]min =
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By Lemma 2.2.25 and Proposition 2.2.26 M is positive semidefinite and by (S52) A
is a minimizer of the map

1
Z EZTMZ — Bz —P(W).

Thus, MA = B. Solving this system one easily gets that
M= =Sty (148
1= =M 13 7]

To conclude we just need to prove that W = 0. Observe that

c
W) = (W122 + Wi QW£3 )
c .
7w2 WZ 7w2
713 2T Wi
Thus, by definition of P(W),
bZ

P(W) = — (Wi, + Wi3)a — 2bWi5 — bWE, — ;W123'

Substituting the expression of A1 and P(W) in Jiin we get
1
Jmin = Wiy (a +b) + Wis 5 (a +1)?,

so that, sincea +b > 0 and Jimin = 0, we deduce W = 0. O

To simplify the exposition, given f such that RT f - e3 = 0 for every R € R let
us define

{v € W22(S): v(x') = —)\Zgllgxl +Axy, A € ]R} ifa(R) #0,
VR =

{v € W22(S): v(x') = Axq — /\;ngz, A€ IR} if b(R) # 0,

Ug == {u € WH(S;R?): u(x') = —%(V’v@V’v)x’, vE VR} :

Lemma 4.3.2. Suppose RTf -e3 = 0 for every R € R and dimR = 1. Let R € R.
Then
/ FR(") dx' =0
3 0 -
for every u € Ug.

Proof. Letu € Ug and v € Vg be such that u(x') = —(V'v @ V'v)x’ /2. By (2.2)it
is sufficient to prove that V'v @ Vv = —(W?)’ for some W € TRg.
Suppose a(R) # 0. Then

o(x') = —/\ZEZ;; X1+ Axp
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for some A € R, so

b(R)  _c(R)
V'o® V' = A? _ach)z) R}
a(R)

where we used Proposition 2.2.26. Then, defining

(R)

ooﬁ
W:i=A 0 0o -11,
_dR) 1

a(R)

we easily get V'o ® V/'v = —(W?)' and W € TRy by Proposition 2.2.26. The case
b(R) # 0 can be treated similarly. O

Lemma 4.3.3. Suppose that RTf - e3 = 0 forevery R € RanddimR = 1. Let R€ R
and v € V. Then for any © € W?2(S) there is & € WY2(S;R?) such that

VET 4V E+VieaVo+ Voo Vie=0

/Sf~R(g) dx’ = 0.

Proof. Suppose a(R) # 0 and let A € R be such that

and

v(x) = A;ngl + Axp.

For o € W22(S) it s sufficient to define

Note that
(R)
: 0 0 0 —g
(0> =AW |0 with W := 0 0 1 € TRgr
0 <(R) -1 0

by Proposition 2.2.26. In particular,

firox @ ¥ = A [[fRw (2) ax’ (4.16)

Define the map ®(t) = Re!" for t € R. By (2.4), ®(t) € R for any t € R, therefore

/Sf.cp(t) <0> i =0 VteR,

[

since ®(t)7 f - e3 = 0. Differentiating with respect to t at t = 0, we deduce

/Sf-RW@) dx' =0,

which gives the thesis by (4.16). O
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Having all the previous results at our disposal we can show that JVK enjoys
some invariance properties.

Proposition 4.3.4. Suppose RT f - e3 = 0 for every R € R and diimR = 1. Let 5 € Vg
and 71 € Ug be such that

Vil +Vi+ Voo Ve=0.

Then JVX(u + 7+ & v +9,R,W) = JV&¥(u,v, R, W) for every admissible quadruplet
(u,v,R, W), where ¢ is defined as in Lemma 4.3.3.

Proof. Since v is affine we immediately have that (V') (v +9) = (V’)?v. Moreover,
by definition of ¢

(Vu+a+) T +Vu+a+8)+V(0+0) V' (0+0)
= (Vu)T+Vu+ Ve Vo

By Lemmas 4.3.2 and 4.3.3, to conclude we just need to show that

/Sf~RW<g> dx' =0,

This easily follows from the specific structure of 7. Indeed, suppose a(R) # 0 and
let A € R be such that

R
z7(x') = —/\C( )x1 + Axo.

a(R)
Then
/;f -RW (g) dx' = A (—W13C(R) + Wize(R) — Wos C:((]l;)) + W23b(R)>
=A <—W2322((11;)) + W23b(R)) =0,
since a(R)b(R) = c?(R) by Proposition 2.2.26. O

We are finally ready to give the proof of Theorem 4.1.5.

Proof of Theorem 4.1.5. Let (4, vy, Ry, Wy) be a minimizing sequence for JVK, Let
P) be the projection of W22 (S) onto Vg,. By Proposition 4.3.4 and the fact that for
every A€ RY2 7 € R% and 6 € R

]VK(un + Ax' + 17,00 + 6, Ry, Wn) = ]VK(un/ U, Ry, Wn)

we can suppose that for all n € IN
@{) /un dx' =0,
Js
(ii) /S ondx' =0,

(iii) Py (vn) =0,
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(iv) /Sskew(V'un)dx’ =0.

Up to a subsequence, we can always assume that R, -+ R € R.
Assume first that

ltnllwro + l[on [y + [Wal* < C.

Then, up to a subsequence we have u, — u in W'2(S;R?), v, — v in W22(S)
and W, — W with RW € NRg. By lower semicontinuity of JVK we deduce that
(u,v,R, W) is a minimizer of JVK,

Suppose now by contradiction that

lunllwrz + [onllf22 + Wal® = 75 = +o0
and define i, = 'ygzun, Oy = 'yrjlvn and W,, = 7;1Wn. Then, up to a sub-

sequence, we have 77, — @ in W'2(S;R?), 3, — o in W>?(S) and W, — W with
RW € NRg. Since [VX(uy, v,, Ry, W,) < C, we have

C 2ryﬁ/SQ((V’ﬁn)TJrV’zzn+V’z7n®V’z7n)dx’+'y$,/sQ((V’)Zﬁn)dx/
2 i 2 = (0
—%z/sf-Rn (0”) dx’—'rn/sf-Ran (m) dx’ (4.17)
o[£ Rl ()
Tu s n\¥Vn 0 .

Dividing by 74 we get by the coercivity of Q
(V' 5)T + V' iy + V50 @ Von| 2 < f (4.18)
n

Passing to the limit we deduce that (17, 7) € Bl. Moreover, dividing (4.17) by 72
and passing to the limit we get by lower semicontinuity that 0 > JVX(iz,5, R, W).
The stability condition (S2) implies that JVX(i1,3, R, W) is zero and 7 is affine. By
Proposition 4.3.1 and the properties (i)-(iv) we deduce that @ = 0, o = 0 and
W = 0. If we prove that i1, and 3, are strongly converging, then the proof is
concluded since we would have

]l + 1952 + W] = 1.

Dividing (4.17) by 72 and passing to the limit we have

0> limsup | Q((V')*3,)dx’".

n—oo JS
In particular, by the coercivity of Q (see Lemma 2.2.6) we get (V')?5, — 0 in
L?(S;R?*2), giving the strong convergence of 7, in W>2(S). By (4.18) we have that
sym(V'i,) — 0in L?(S;R?*2). By (iv) we can apply Korn’s inequality to deduce
that 17, — 0 strongly in W'?(S;R?), concluding the proof of the first part.
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Suppose now that (S2) fails. Let (7,1) € Bl such that for some R € R and

180

RW € NRj either [VX(7,5,R, W) < 0 or JVK(7,3,R, W) = 0 and 7 is not affine. In
any of these two cases, we have

/fR()dx—/fRW()dx—/fRWz<)dx<0

In particular we have that JYX(i1,5, R, W) < 0 for every choice of € > 0. Since for
every v > 0 we have that (y%i1, 9 ) € Blin an,

(P90, RAW) =97 | QUV')?0)dx — (1 +¢) /sf R (0) =

e [£or (9) ax - e [ rRWE () a,

we deduce that

Jim %Isv “(v*a,90,R W) = X (a,5,R,W) <0
This implies that
Jm S (2,03, R q W) = —eo,
as desired. 0
Remark 4.3.5. From the proof it follows that inf JYK = —oc if there is an admissible

quadruplet (77,3, R, W) such that (i7,7) € BI? and ]VK( 9,R,W) < 0. In this case,
one can repeat the same argument with ¢ = O

Remark 4.3.6. We give a short sketch of the proof of Theorem 4.1.5 in the case
dimR = 0. Firstly, we can assume without loss of generality that R = {Id}.
Reasoning as in Proposition 2.2.26, since NRq = ]Rzkew, one can show that ab —
¢? > 0, where we have written 4, b, and ¢ in place of a(Id), b(Id), and c(Id). Then,
arguing as in Proposition 4.3.1, one can prove that, when (52) holds, any minimizer
(u,v,R, W) of VK with (u,v) € B};g is of the form (7,6,1d,0), with 7 € R? and
0 € R. Note that, in this setting, stability condition (52) basically reduces to the
linearized stability of [LM09] without imposing any additional Dirichlet condition on

the boundary. Finally, one can argue as in the proof of Theorem 4.1.5 to conclude.






A hierarchy of models
for ribbons

5.1 Assumptions and main results

In this chapter, S represents the mid-line of a rod, so that S := (0, L), with L > 0.
The elastic energy density takes the form W (M) := [MTM —1d |?, for M € R3>*2.
Note that W satisfies both (RG) and (FI). The total energy is defined as

Exy) = [ W(Tw)dx+3} [ [ViyPdr,  ye WAQR).

Here, (J;) C R is a sequence such that §;, < hash — 0. Physically,  and Jj,
represent the thickness and the width of a ribbon, respectively. They are both small
with respect to the length L, albeit on a different scale.

In this chapter, we study the I'-convergence of various rescalings of Ej,. Precisely,
we compute the I'-limit of

E, ==, "Ey, x> 2.

As in the previous chapters, we set ¢y := /2.

In the first part, we treat the Kirchhoff’s regime « = 2. We prove that, for
sequences (y;,) with bounded energy, V,y, — (di  dz) in L?(Q,R3*?), where d;
and d, are independent of x; and define a Frenet-Serrin frame for which 01d; - d, =
0. Since d; and d; can be thought as being induced by a deformation y of the mid-
line S, the constraint d1d; - dp = 0 is a necessary condition for y being the restriction
to S of an isometric immersion of (), at least for & small enough. We show that E}
I'-converge to

L
1X(d;, dy) ::/O (11dy % +2]0ads|?) dx if h ™28, — oo,

L
15(dy, do) ::/O (101 + 2]00ds | + Qs (011, 01dy)) dx  if ™28, — 0,

103
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where
Qs(u,0) := min {|&]* +2[u-¢—v-0|}. (5.1)
ZeR3

The asymptotic behaviour of =26, is related to the convergence of det(V3y;), that,
roughly speaking, represents the Gauss’ curvature. Precisely, when h’zéh — 0,
we have det(V,y;,) — 0 in the sense of measures and the term Qs emerges as a
relaxation of this constraint. The case &), ~ h? is still open and in the next sections
we explain some of the difficulties in the study of this regime.

Then, we move to the so-called Von Kdrmén’'s regimes, corresponding to a > 2.
For a sequence of deformations (i) with bounded energy, we identify a displace-
ment u := (uq,uy, u3), where each component is the limit of a suitable rescaling of
the displacement at the level h. While u; and u3 are independent of x;, #;—the
displacement in the x;-direction—is affine in x, and has the form

up = ¢ — x01uy, (5.2)

for some ¢ € W12(0, L). Moreover, we show that a suitable rescaling of h =19y}, 3
converges to a function 6, depending only on x; and representing the twist of the
ribbon.

We prove that Ejf '-converge to

L
IVK(ul,ug, 9) = /0 (\811u3|2 +2|819|2) dx + ,/Q |(81u3)2 +281u1|2dx ifa =4,

L
ILVK(Ml,Mg,Q) = / (‘811M3|2 +2|819|2) dx +4/ \aluﬂzdx if o > 4.
0 Q

Note that both IVK and I*VK can be equivalently rewritten in terms of ¢, up, us,
and 0.

As in Chapters 3 and 4, when 2 < & < 4 some constraint relating the in-plane
and out-of-plane displacement appears at the limit. This is also the case here,

where we have that
(01u3)? +201u3 = 0. (5.3)

Note that, by (5.2)-(5.3) it follows that dju; = 0 and u; is independent of x;.
Differently from the analogous constraint for plates, given uz € W>2(0, L), there
always exists 11 such that (5.3) is satisfied.

When 2 < a < 4 and h’zéi_'y — +o00, we show that Ej; I'-converge to

L
19K (43,0 = / (101113 +2]016]2) dx.
0
Instead, when 2 < « < 4 and h_zcﬁ*y — 0, we have the I'-convergence to
L
IVKS(M3, 9) = ‘/0 (‘8111/{3‘2 + 2|819|2 + Qs (3111/[3, 319)) dx,

where, with some abuse of notation we still denote by Qs the function
b) := min {c? + 2|ac — b*|}. 4
Qu(a,b) = min {¢* +2lac — 1|} (5.4)

As for the Kirchhoff’s case, the behaviour of h_zéi_y is linked to the convergence

of a suitable rescaling of the Gauss’ curvature. The case (5277 ~ h? is still open and
presents analogous difficulties to the case & = 2 and dj, ~ h.
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5.2 The Kirchhoff’s regime

In this section we first prove the compactness and then move to the I'-convergence
result for & = 2.

5.2.1 Compactness

Theorem 5.2.1. Let (y;,) C W22(Q;R®) be a sequence such that E3(y,) < C. Then,
there are functions y € W22(0,L;R3), dy € W'2(0,L;R®) and p € L?(Q;R3) such
that, up to a subsequence and to translation,

(@) yn — yin W(QRY),
(i) ™19y, — dy in W2 (C;IR3),
(iii) h=20%y, — pin L2 (L R3).
Moreover, di = 01y and dy are unitary and orthogonal almost everywhere. Lastly, d1d1,
01dy, and p are almost everywhere parallel to dz := dy A dy.

Proof. By the boundedness of the energy, we immediately deduce (up to a sub-
sequence) the weak convergences of the rescaled gradient and Hessian

(@) Viy, — Bin L?((; R3*2*2),
(b) Vyy, — Ain L*H(Q;R3*2).

Indeed, the rescaled gradient is bounded in L* given that

|IMTM| > VM e R>2,

1 2
M
We call d; and dj the columns of A. Up to translation, we have that y, — y in
W22(0; R?). Clearly, since d,y;, — 0 in W2(Q;R3), the function y is independent
of x5. Moreover, Vj,y;, — A in W2(Q; R3*?) so that the convergence Vyy, — Ais
strong in L*(€);IR%*2). This, combined with the strong convergence V,y! V,y; —
Id in L?(Q;R?*2) following by the energy, allow us to deduce that ATA = Id so
that d; and d; are unitary and orthogonal almost everywhere. Since h~193y;, — 0
strongly in L2(O;R3) we get dody =0, i.e., dy is independent of x5.

To simplify the notation, we will write the tensor B as a 2 x 2 matrix whose
entries are R® vectors. We have already deduced that By; = B%y = 01d; and that
By, = By; = 91dp. Denote with p the vector By,. We now show that 91dq, 91dy,
and p are orthogonal to both d; and d,. Observe that

1 1 é
E‘|82(vh3/}{vhyh —1d)[[ w2y < CEHVW;TW% —Id |2 < Cﬁh — 0.
Moreover,

1
#’ﬂvhyl{ Viyy —1d)

1 (912ym) T ) 1 ( (O1yn)T ) 1
= — 5} h=o 0 h=o .
h |:<h1<azzyh>T ( 1Yn zyh) + hil(azyh)T ( 12Yn 22yh)
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Passing to the limit we deduce that

((alpde)T) (di dy)+ (Z;;) (01dy p) =0. (5.5)

Componentwise, (5.5) gives

201dy -d1 =0,
O1dy -dy+di-p=0,
2p-d2:0.

Hence, 914, is orthogonal to d1 and p is orthogonal to d;. Differentiating |da|> = 1,
we deduce that d1d; - d = 0, that gives both the desired result for both d; and p.
Differentiating the identity d; - dy = 0 and d; - d; = 1 we get

2d; - 01d1 =0,
01d1 - dr +dq - 01dp =0,

which gives the orthogonality of d1d; to both d; and d,. O

The triplet (dy,dy, d3) is a Frenet-Serret frame representing a deformed config-
uration of the mid-line. The extra condition that 0,d; and dd, are both parallel to
dz ensures that this frame arises as the restriction on the mid-line of an isometry of
a thin strip.

To simplify the notation we introduce the set

Fx € W¥2(0,L;R%) x W'2(0,L; R%),

representing the admissible Frenet-Serret frames. Precisely, we say that (y,dy) €
Fx if, setting di == 91y,

(i) dy-dy =dy-dy=1ae.in(0,L),
(ii) dq-dy =0a.e. in (0,L),
(iii) 81d1 . dz = 81d2 : dl =0a.e. in (O, L).

Moreover, given a sequence of deformations (y;,) C W2?(Q;R%) and a couple

(y,d2) € Fx, we say that y;, T, (y,dp) if
(i) yp — yin W22(Q; R3),
(ii) h19py; — do in WI2(Q); R3).

We compute the I'-convergence of E2 with respect to the above convergence,
that is the natural one emerging from the boundedness of the energy.
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5.2.2 T-convergence for h* < §;, < h

Theorem 5.2.2. Suppose that h* < 6, < h. Then for any sequence of deformations
(yn) € W22(Q; R®) such that y, Ix, (y,dy) for some (y,dy) € Fx we have

liminf E2(y;,) > I¥(dy, d), (5.6)
h—0+
where dy = 0d1y. Moreover, for any choice of (y,dp) € Fx there is a sequence of
deformations (y,) C W>2(Q;R3) such that y;, T, (y,dz) and

lim E%(yh) = IK(dl,dz),

h—0+
where dy = d1y.
Proof. We simply have

E; (i) Z/QIV%yh\dez /Q(|allyh|2+2|alzyh|2) dx.

Passing to the limit we deduce (5.6) by lower semicontinuity. Let (y,dy) € Fx N
(C*([0, L];R3))2. We define
Yn =Y + thdz.

Clearly, y,, — y in W22(Q;R3). We get

Viyn = (dl dz) + hxo (aldz O) ,

where d; := d1y. In particular, h~'9,y;, — dp, showing that y, Tx, (y,dp). Com-
puting the elastic energy density term we get

ViynViyn —1d = O(h?).

Differentiating again we obtain

01dy 0:1d
v%yh = (aid; 10 2) +O(h)

Thus, since h*/ 5,3 — 0, passing to the limit in the total energy we get

L L
ERun) = [ 1Pz +2 [ T[ordaf?dx = 1N(ay, o).
0 0
To conclude for a general pair (y,d,) € Fx we shall apply a density argument. It
is enough to prove that for every couple (y,dp) € Fx there is a sequence
(yn,d5) < (C([0, L R%))* N Fic

such that y, — yin W22(0, L; R®) and dj — dp in W?(0, L; R3). Let (y,d2) € Fx.
Define dq := 91y, k := d1d; - d3, and T := 9d1d; - d3, where d3 := dq A dy. By density,
there exist two sequences

(Ta), (xn) < C*([0, L])
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such that 7, — T and k, — x in L?(0,L). Let

0 0 —xy
Ay, =10 0 —1,].
Kn T O
Denote by R, € C*(]0, L]) the unique global solution of the Cauchy’s problem

{81}{ = XA, inl0,L], 57)

X(0) = (d1(0) da(0) 5(0))-
Note that R, (0) € SO(3) and that
91(RyRY) = 91R,RY + R, (9;1R,)T = (RyA4RY + R,ALRY) =0,

thatis R, € SO(3) everywhere in [0, L]. We define

() = y(0) + [ Ra(s)er ds,
a3() = R (b)es.
By construction, we have that
(yn,d3) € (C¥(0,L;R?))* N Fx.
Indeed, defining df := 01y, we get

01d7] - d5 = 01Rue1 - Ryey = k,Rye1 - Rpep =0,
d? . aldg = Rnel . aan€2 = Tanel . Rn€2 =0.

Clearly, up to subsequences, R, — R in W1'2(0, L, ]R3X3). Moreover, passing to the
limit in (5.7), we deduce that R is the unique solution of

{81X = XA in|0,L], 55)

X(0) = (d1(0) da(0) 3(0))-

0 0 —x
A=10 0 —-1].
x T O

In particular, R, = Rin Wl'z(O, L;R3 x 3). Since the matrix

(dv dy ds)

is a solution of (5.8), we conclude that

with

R=(dy dy da),

giving the convergence of d5. The convergence of v, follows from its definition. []
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5.2.3 T-convergence for J;, < h?

When ¢, < h?, we cannot use the same recovery sequence of the proof of The-
orem 5.2.2. Indeed, the term involving the elastic energy density ¥V would blow
up. The main difference is that, as we show now, the Gauss’ curvature converge to
0 in the sense of measures.

Lemma 5.2.3. Suppose 6, < h? and let (y;) C W?2(;R3) be a sequence of deforma-
tions such that E3 (y) < C. Then

det(V2y,) =0 in My(Q).

Proof. Let G := V;,yI'V,y;, — Id. Observe that, in the sense of distributions, it
holds that .
7
Given that |Gy |2 < C8, < Ch?* we deduce that det(V2y;,) — 0 in the sense of
distributions. By the energy, we can also bound the L! norm of the determinant

2
911Gy + 500Gl + EalzG?z = —2det(Viy). (5.9)

so that, up to a subsequence, we have the weak-star convergence det(V%yh) S
in M;(Q)). By the uniqueness of the limit, we conclude that u = 0, finishing the
proof. O

To construct the recovery sequences, we resort to a careful construction of
isometries y;, of the thin strip (), for which det(V%yh) = 0 and to a relaxation
argument. We start with a simple observation regarding the norm of the Hessian
of an isometric immersion and a preliminary lemma that justifies the ambiguous
notation for Qs (see (5.1) and (5.4)).

Proposition 5.2.4. Let u € W22 ((;R?). Then
20 v 2
Veul> =Y |9jju - v|?,
ij=1

where v := d1u N dold.

Proof. Differentiating the identity Vu' Vu = Id, we deduce that

dpu - dqu =0,
dppu-diu =0,
0111 - dou + AU - du =0,
012U - 0ot + Dot - A u = 0,
dppu - dou =0,
dypu - dru = 0.

It easily follows that d;;u is parallel to v for every i,j = 1,2, and the proof is
concluded. O
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Lemma 5.2.5. Let (y,dy) € Fy and define dy := 01y. Let x := 01dy - d3 and T =
01dy - d3, where d3 := dq N\ dy. Then

Qs(014d1,01d2) = Qs(x, T),
where we tacitly passed from Qs defined as in (5.1) to Qs defined as in (5.4).

Proof. Since both d1d; and 9d1d, are parallel to d3, and ds is unitary, we have
|01d1| = |x| and |91d5| = |7|. In particular, for ¢ € R®,

[ +2001dy - § — iy drda| = [C- i + 18- o + G- da* +20xC - d3 — 7.
Then, if ¢ is the minimizer of
& |82 +2[01dy - & — 01da - 01da|,
it must be such that & - dy = ¢ - d» = 0, and ¢ - d3 minimizes
¢ c? 4+ 2lkc— 13,
concluding the proof. O

As we anticipated, the construction of the recovery sequence is based on a relax-
ation argument. The next Lemma is thus concerned with the lower semicontinuous
envelope of the map

L
/ |M|*dx if det(M) =0a.e.,
0

Y:L2(0,LRGR) = R, ¥(M):= { (5.10)

400 otherwise,

with respect to the weak L? topology (see also Remark 5.2.8).

Lemma 5.2.6. For every matrix-valued field M € L%(0, L; IR%YXH%) there exists a sequence

(M) C L?(0,L; R%:2)

sym

such that for every n € IN we have det(M,,) = 0 almost everywhere on (0,L), M, — M
in L2, and

'/OL M, 2 dx — /OL |M\2dx—|—2/OL | det(M)| dx.
Moreover, the sequence M, can be choosen of the form
My = Anpn @ pn
for some Ay, € C*([0,L]) and p, € C*([0, L); R?) with |py| = 1 and p, # ey on [0, L].

Proof. In this proof, we follow [Fre+15, Lemma 3.1] and [Fre+16, Lemma 16].
Step 1. Suppose first that M is constant and diagonal. If det(M) = 0, the result is
trivial, thus we may assume that det(M) # 0. Let

0 |Mi; |
| M| + | M|



5.2 THE KIRCHHOFF'S REGIME 111

Since M has nonzero determinant, 6 € (0,1). Moreover

M2, M3
S 4 2 M2+ Mool + 2 M M| = [MP? +2]det(M)|.  (51D)

Let x(x) == x(0,0)(x — [x]). Now define x, € L*(0, L) as xu(x1) == x(nx1). Since
X is 1-periodic with average over one period given by 6, we have x, — 6 in
L*(0,L). In particular, defining

M M
My (x1) = xn(x1) ey @ e1 + (1= xu(x1)) —2

0 1_962®62/

we get det(M,) =0, M,, =~ Min 12, and by (5.11)

L L M2, M3
2 _ 22
/0 |Mn| dx_/o ()(n(xl) 92 +(1—Xn(X1))(1_9)2>dx
L L
%/ |M|2dx+2/ | det(M)| dx.
0 0

If M is constant, but non diagonal, it can be diagonalized by an orthogonal
matrix Q € O(2), namely QT MQ is diagonal. Construct a sequence M, as above
for QTMQ, and define M,, :== QM,,QT. We have that M,, — M in L2 and

L L L L
/|Mn]2dx:/ \Mn\zdx—>/ |QTMQ|2dx+2/ | det(QTMQ)| dx
0 0

_/ \M|2dx+2/ | det(M)| dx.

Step 2. Suppose now that M is piecewise constant. Then, gluing together the
construction of Step 1 on each set where M is constant, we get the desired sequence.
Step 3. For an arbitrary M € L?(0, L; ]ngxnzl) there is a sequence

(My) C L*(0, L;Ri3)

of piecewise constant functions such that My — M in L2. For every k € N we
apply Step 2, and construct sequences

(M, x) C L*(0,L; R%x2)

sym

such that det(M,, ;) = 0 almost everywhere, M,y — My in L? as n — oo, and

L 2 n—sco L 2 L
/ M2 dx 22 / M2 dx +2 / | det(My)| dx. (5.12)
0 0

By (5.12), the matrix-valued fields M, ; can be chosen uniformly bounded—with
respect to both 1 and k—in L. Then, since the weak topology of L? is metrizable
on balls, we conclude by a diagonal argument.
We are left to prove that the sequence we have constructed can be chosen of the
form
My = Ay Pn @ Pn
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for some A, € C®([0,L]) and p, € C*([0, L];R?) with |p,| = 1 and p, # e, on
[0,L].

Up to a further diagonal argument, it is enough to show that for every matrix-
valued field M € L?(0,L; ngxnzl) with det(M) # 0 almost everywhere on [0, L]
there are sequences (1,) C C*([0,L]) and (p,) C C®([0,L];IR?) with |p,| = 1
and p, # e; everywhere on [0, L] such that

Anpn @ pn— M in L2(0, L;RG).

Thus, let M € L2(0, L; leyxn%) be such that det(M) = 0 almost everywhere. Firstly,
since M is symmetric, we have M = Ap ® p, where A := Tr(M) and

| sign(Mi1)Mey/|Meq| if Me; # 0,
P= e if Me; =0

Indeed, if Me; = 0, then by symmetry

M=<0 0 >:M22€2®€2

0 My
and Tr(M) = Mp,. If instead Me; # 0, we have
M My
PEPI = [agerp = M age, o
MM, M
(P@pha= [Mer[2 7 [ Mey 2
M, My

(P@p)2= [Me, |2 = ZZW/

and 5 )
M | Me |

Tr(M M M 12 )
(M) 11+ Mz = My + My My

Since p; > 0, the unit vector p can be expressed by means of a map

oo (T
pel (O’L’( 2, 2})
_ (cos(B)
P= sin(B) ) -
~ 1 T 1
b= (=) V(B (3-3))
and B, = pyu * En, where p;, is a standard mollifier with support contained in the

ball of radius 1/n and, with a little abuse of notation, we still denote with Bn its
extension by zero to R. Clearly, B, € C*([0,L]) and B, # 7t/2 on [0, L]. Moreover

as

Define

1
n

Bu(x) = B < [ 1(Baly) = BG)ouCx =)l dy < [, [Bulx —y) — ()| dy
1

<2— =0

n2
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Thus, B, — B pointwise, and by Dominated Convergence Theorem, for every
g>1

o () o0 o

Clearly, p, € C®([0,L];R?), and p, # e everywhere on [0,L]. Let (A,) C
C*([0, L]) be a sequence such that A, — A in L?(0, L). Defining

M, = Appn @ pa.
we conclude. O

We are ready to prove the I'-convergence result.

Theorem 5.2.7. Suppose that 5, < h?. Then for any sequence of deformations (yy) C
W22(; R3) such that vy, Ix, (y,da) for some (y,dp) € F it holds

lim inf E} (y) > 15(dy, d), (5.13)
where d = 01y. Moreover, for any choice of (y,dy) € Fx there is a sequence of
deformations (y,) C W?2(Q;R3) such that y;, Tx, (y,dy) and

Jim, Eii(yn) = I(d1,da),
where dq := d1y.

Proof. We start by proving the liminf inequality (5.13). Without loss of generality
we can suppose that E2(y;) < C. For every ¢ € C}(€);[0,1]) we get

E;(yn) > /Q |Viyn|* dx = /Q @ (1011yn|* + 2/ 12yn|?* + |20y |?) dx
+ [ U= ) (Buan + 20 D12y + 2050, 2)
= /Q ®1911yn +h*2822yh|2dx — 2/Q (pdet(Vﬁyh) dx
+ /0(1 — @) (191195 — h 2000y |* + 4|h 1912y, [*) dx
+ 2/0(1 - 9) det(Vﬁyh) dx.

Since ¢ is non-negative, all the terms are lower semicontinuous with respect to
the weak convergences in L? by convexity. By Lemma 5.2.3 and Theorem 5.2.1,
passing to the limit we deduce that

lim inf E2 >/ o1y + 2 d /1— 1y — pP? + 4[31da|?) d
iminf By (y) > | glordy +pl*dx+ | (1-¢)(|1ds — o +4[01d2|") dx

:/ \]B|2dx+2/ det(lB)dx—Z/ det(B) dx,
Q QO @)

(5.14)
where

d1dq 81d2)
B = .
(aldz P
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Let
Ot = {x € Q: det(B(x)) > 0}

and QO := Q\Q". Pick a sequence (¢,) C C}(€;[0,1]) such that ¢, — x+
almost everywhere. By Dominated Convergence Theorem, from (5.14) we deduce
that

tim nf E3 (1) > /Q|]B|2dx+2/0+godet(B)dx—Z/()i(l—(p) det(B) dx
:/Q(|]B|2+2|det(]B)|)dx
> [ (i + 2000 + Qure, drd)) i = 1 ).
We move now to the recovery sequence construction. Let
(y,d2) € Fie N (C([0, L, R%))%.

Define « := d1d; - d3 and T := 01d, - d3, where d; = 9d1y and d3 = dq A dy. For
x1 € (0,L), let c(x1) € R be such that

le(x1) > 4 20k (x1 )e(x1) — T2(x1)| = Qs(x(x), T(x)),

where Qs is defined as in (5.4). It is a simple computation to prove that

) xa) i [xe)] > o),
) = {K<x1> if [ (x1)| < [en)l

Thus, ¢ € L?(0, L). Consider the matrix-valued field

we (s 0)

By Lemma 5.2.6 there exist sequences (A") C C®([0,L]) and (p") C C*([0, L]; R?)
with [p"| =1, p" # ep everywhere on [0, L], such that, defining

Mn = /\npn ® pn/
we have M" — M and

L L L L
/0 |M”|2dx—>/0 |M|2dx+2/0 |det(M)\dx:/0 (I + 2|72 + Qs (k, 7)) dx

Note that, since both 91d; and 9d1d, are parallel to d3 and d3 is unitary, we have
|k| = |01d1| and |T| = |01d>|. By Lemma 5.2.5

Qs(01d1,01d2) = Qs(x, T),

where we tacitly passed from Qs defined as in (5.1) to Qs defined as in (5.4). It
follows that

L
/O M2 dx —s 13(dy, da). (5.15)
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Denote by R" € C®([0, L]) the unique global solution of the Cauchy’s problem

QU

91X = XA" in|0,L],
X(0) = (d1(0) 2(0) 5(0)),
where
0 0 —(M")n
A" = 0 0 —(Mn)u .
(M1 (M")12 0
Define df := R"eq, and d3 := R"e;. Let

Y (x1) = y(0) + /0 " (s) ds.

Arguing as in the proof of Theorem 5.2.2, R" € SO(3) everywhere on [0, L] and so
(y",dy) € Fk.

We are now in the position to apply Theorem 2.2.15 with p = p", y = y",
dy :=dj, and A := A", up to a continuous extension on a neighbourhood of [0, L].
Thus, for some " > 0, there exists, an isometry

u" € W22 (Qen; R?) N W2 (Qen; R®)
satisfying (a)—(c) of Theorem 2.2.15. For h < €", we define
vy (1, x0) = " (x1, hxy).

Clearly, y! € W>2((; R?). As h — 0 we have y} — u"(-,0) in W>?((;IR®), and
since u" (x1,0) = y"(x1) by Theorem 2.2.15—(a), we deduce y! — y" in W>2((}; R?)
as h — 0. By Theorem 2.2.15—(b), we have that

Vi (x1,x2) = V" (x1,hxp) — V" (x1,0) = (df  dY) in W2 (Q; R3*?).
Thus, yj, 7K, (y",d}). Finally, since u" is an isometric immersion, we get
(Vi) Vit —1d = 0. (5.16)
Then, by Theorem 2.2.15—(c) and Proposition 5.2.4, we have
/Q IV2y0 2 dx = /Q V20" (x1, b ) |2 dxc — /Q V20" (x1,0) 2 dx

L
= [ W) o p ) Pdx = [ |72 dx

that gives, in view of (5.16)
L
E2(y1) — / | M, |2 dx. (5.17)
0

Arguing as in the proof of Theorem 5.2.2, we get that y, — y in W>? and df — dp
in W12, Thus, owing to (5.15) and (5.17), by a diagonal argument, we can extract a
FK
sequence iy, such that y;, — (y,d,) and
Eq(yn) = 15(dy, da),

concluding the recovery sequence construction. For a general pair (y,dy) € Fi we
conclude by density, arguing as in proof of Theorem 5.2.2. O
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Remark 5.2.8. Owing to Lemma 5.2.6, and arguing as in the proof of the liminf
inequality, one can show that the lower semicontinuous envelope of ¥, defined as
in (5.10), with respect to the L2 weak topology is

L L
¥+ (M) ::/0 |M|2dx+2/0 | det(M)|2.

Before moving to the Von Karman's regime, let us give a few hints of the
main difficulties we encounter when 6, ~ h?. Arguing as in Lemma 5.2.3, one
can deduce that det(V?2y;,) — p, for some u € M;(Q). By (5.9), it follows that
—2) = dppg in the distributional sense, where g is the L? weak-limit of 1 =2G},. At
the moment we do not have a full characterization of the measures y that can be
obtained in this process. However, preliminary calculations suggest that y should
belong to the space M (0, L; L2(—1/2,1/2)).

Furthermore, arguing as in the proof of Theorem 5.2.2, one can get a lower
bound where the term || det(IB)|| ;1 is replaced by || det(IB) — y/| o1, The constraint
—2pt = 928 seems to suggest that also the term ||g[|?, should be kept at the limit.
We believe, however, that this lower bound is too loose.

Constructions of deformations at the optimal scaling show that at least two
different oscillatory behaviours can take place, competing with each other. The
first is an oscillation of the Frenet-Serrin frame at a rate that is slower than h. The
second is an oscillation at scale i that seems to preserve some structure of the
Hessian at the limit. The main difficulty is how to detect these oscillations for an
arbitrary sequence in the lower bound.

5.3 The Von Kidrman'’s regime

We start the section by proving a compactness results that holds for every a > 2,
then we move to the proofs of I'-convergence, dividing our results between the
three regimes: « € (2,4), x =4, and o € (4, ).

5.3.1 Compactness

Proposition 5.3.1. Let « > 2 and let (y;,) C W??(Q;R3) be a sequence of deformations
such that Ej(yy) < C. Then, there is a sequence of rotations (Ry) C SO(3) and a

sequence of constants vectors (c;,) C R3 such that, setting 7 := R}{yh + ¢y, we have the
following convergences (up to a subsequence):

(i) up1 = min {5;7,55_27}(]7;1,1 —x1) = up in WH2(QQ),

(i) upo = hmin {5;7,55_27}(%,2 — hxy) — up in WY2(Q), for some uy €
W22(0,L),

(iii) wup3 =0, "na — s in W22(Q), with uz € W>2(0, L),

(iv) Ay =3, (Vi —Idsxa) — Ain W2 (Q;R¥2), with A € W2(0, L; R3*2).
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0 O
A= 0 0],
811/13 0

(@) if &« > 4 we have uy = ¢ — xp01uy for some & € Wlfz(O, L),

Moreover, A has the form

with € W12(0, L). Lastly,

(b) if2 < a < 4 we have uy = 0 and uq, uz satisfy (5.3).
Proof. Define

= |1§)| /th]/h dx € R3*2,

By the Poincaré-Wirtinger inequality, we have that

M;,

IV iy — Mull 2 < CIV(Viyi) 12 < ClIV2yll 2 < €87 (5.18)

By the uniform bound on the energy, V,;, is uniformly bounded in W2 ((); IR3*2).
In particular, M}, is uniformly bounded. Since

Mj My, —1d = (M, — Viyp) "My, + Yyl (My, = Viyn) + Viyi, Viy, —1d,
it follows that
IM] M, —1d| = C||M M, — 1d |
< C(I1Vm = Ml 2| M2
; (5.19)
+ IVl 2 = Ml 2 + V3 Vg —1d |12
<cs .

In particular, for h < 1 we have that M] M, is positive definite, thus by polar
decomposition there is a matrix R;, € O(3,2) such that Mj, = Rj,4/ MhT M;,. Define
Rh = (Rhel RhEZ Rhel N RhEZ)

Let 1
= RT., _
Cp == |Q| /()(Rhyh X161 ]’ZXZEZ) dx,

and set §, == Rlyj, + c;. Observe that E¥(,) = E%(y),). We start by showing
convergence (iv). Note that / MZMh + Id is invertible and thus, by (5.19),

‘,/M,{Mh —Id‘ < (MM,{M,1 +Ic1>1

Then, by definition of R, we have

T
RIMj, = (\/ Mé’Mh> ) (5.21)

|M] My, —1d | < co) (5.20)
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so that, by (5.18) and (5.20)

ARl 2 < 8, I Vadh — Idsz 2

1— ~ - L
< 0, (IR Von = R Ml 2 + 1RT My — Tdaea [12) < C.
Moreover,
1— ~ 1- -
IV AWl 2 = 6, "IV (Vagi) Iz < 8, " IVETull2 < C,

and this concludes the proof of convergence (iv). Since

19244112 = 8, 102(Vigin) 2 = 18, " 1 92( Vi)l < Ch — 0,

we have that A is independent of x;.
For convergence (iii), it is sufficient to note that u, 3 has zero mean and that

IVupsll2 =8| Vinalle <8 Vidinalle < 67|V, —Idaxa [|2 < C,
1— _ 1— _
IV2upsll2 =6, "IVViinsliz <6, "IVl < C.
As before, to prove that u3 is independent of x; note that
921,51l 2 = 1), |h 0]l 2 < 1),V — Idsua |2 — 0.

Moreover, since .
dtpz =06, "01ins = (An)a1,
we have A31 = 811/[3.
We move now to the proof of (i)-(ii). Observe that

(Viin — Idax2) " (Vi — Idax2) = Viiip Vi, — 1d

B (5.22)
—2sym((V;, ) —1d).
By (iv) and a standard Sobolev’s Embedding argument, we have
IViin —Idssa [lpr < C3) 71 Vp < oo (5.23)
Thus, by (5.22) and Holder’s inequality we have that
| sym((Vy,g,)" —1d)||;2 < Cmax{&iV_z,éz}. (5.24)

By some simple computations, we have

oy B l0upa\ L 22y -
<h_181uh/2 h_zazuh,z —mm{éh /9, H(Vagp)' —1d). (5.25)

Taking the symmetric part on both sides of (5.25), by (5.24) we deduce that, for
h<1

sym (31 Up,1 32uh,1>

<
d1upp  Oolpp -

L2

<C (5.26)

o1ty hlazuh,l)
L2

sym (hléluhz W23,
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By (5.25) we also deduce

;o y—1 g hlopuy,
Ay, = max{d, *,d} (hlamhrz 250 (5.27)

Note that, by (5.21), we have that
/Q(Vh]]h),dx = /Q(R;Vhyh)’dx = (R;Mh), S Rg;nzl
In particular, skew(AL) has zero mean, and, by (5.27), so has

ou oou
skew< 1n1 O2up
d1Upo  O2lpp

Then, since both uj, ; and uj, , have zero mean, convergences (i)—(ii) follow from
(5.26) and an application of Korn’s inequality. By (5.26), we also deduce that

oty = dqUp + dpug = 0.

This implies that u, does not depend on x, and that there exists & € W'2(0, L)
such that u; = & — x0qup. In particular, x201u; € W2(Q), thus uy € W?2(0,L).
Taking the symmetric part on both sides of (5.27) and passing to the limit, we
deduce from (5.26) that sym(A’) = 0. We show now that Ay; = —Ajp, = 0. We
have

d1(Ap)12 = 01 (5,17%_132?;:,1) = h_lfﬁﬂalzﬂh,l = h_lts;ﬂau}?h “eq
= h715,177312]7h <01y + hilf%iﬂalz]?h - (e1 — 017n) (5.28)
1, 4 .1- 5 ~ 11— _ .
= Eh 1(5; 782(81]/;[ . alyh - 1) +h 1(5; 7812]/],,(6’1 - 81yh).
Note that, since h’léh — 0,
110y 00(019 - 019 — 1) = I ' 83926, " (919 - 015 — 1)] — 0
in (W'2(Q))*. Moreover, since 5;7”1_18129;, is uniformly bounded in L2, we have
by (5.23)
h715}11_7812y~h(61 - alyh) —0 in L@(Q)/
for every g € [1,2). Passing to the limit in (5.28), we deduce that d; A1, = 0, that

is Ajp = ¢ for some ¢ € R. Thus, since we already observed that skew (A} ) has
zero mean, so has A, from which it follows that A, = 0. We are left to prove (5.3).

Thus, suppose that 2 < a < 4. Then, dividing (5.22) by 55772 and passing to the
limit, we deduce
2-2 1) — —1aTA
g, ~sym((Viyy)' —1d) = —5 A7 A.
Looking at the top-left component, we get

1, 71 1, 1

d1uy = _E(A A = —§A31 =-3

proving (5.3). Recalling that u; = § — xp0115, and that u3 is independent of x,, we
immediately deduce that 911, = 0. Since u has zero mean, it follows that u; = 0.

Then, by (5.3), u; € W?2(Q). O

(9113)?,
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5.3.2 T-convergence for « > 4

In order to make the exposition more clear, we split the I'-convergence result in
two parts. Firstly, we prove the I'-liminf inequality, then we move to the recovery
sequence construction.

Theorem 5.3.2 (liminf inequality). Let « > 4. For any sequence of deformations
(yn) € W*?(Q;R3) such that EX (yy,) < C we have that

liminf E} (y,) > ™K(uy,u3,0),
h—0t+

where uy, uz and 0 are the ones given by Proposition 5.3.1.

Proof. We borrow the notation from Proposition 5.3.1. Firstly, note that Ej (y) =
Ej (7). Moreover, by the convergence of A;, we deduce

IV — sz 12 < €5 2.

Thus, since v > 2, we have
57 (Vi 14,2 (Vi ~ 1d2) =0
strongly in L?(S;R?*2). Hence, by (5.22) it follows that
;Z(thigvh]]h —1Id)1; = 20117 in Lz(Q).
Then, by lower semicontinuity

lim inf E{ (y;,) = lim inf E{ (7
iminf Ej (yy) = liminf Ej (7,)

h—0+t

. 1 _ _
> liminf [(5‘"/ |(VhyZVhyh —Id)y1 [ dx
h J/Q

1 - 2 1y =2
+5;:2/Q|311yh,3 dx+5zz/0|h 01203 dx}

L
> 4/ |04 u1|* dx +/ (1911ua]* +2[016/%) dx = IV (uy, u3, 0).
O 0

This concludes the proof. O

Theorem 5.3.3 (Recovery sequence). Let & > 4. Let 0 € WV2(0,L), up,uz €
W22(0,L) and uy € WY2(Q) such that uy = & — xp01uy for some & € WY2(0,L).
Then, there exists a sequence of deformations (y;) C W*?(Q;R®) such that

(i) upa =06, " (yn1 — x1) = uy = & — xp9qup in W2(QQ),
(i) upo = hd, " (yna — hxa) — up in W22(Q), with up € W>2(0, L),

(iii) w3 == (5;11_7yh,3 — ug in W22(Q) with uz € W>2(0, L),
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(v) Ay =0, " (Viyn —Idsxa) — A in W2(Q;R3*2) with

0 0
A= 0 0],
81u3 0
v) Ej(yn) — "™V (uq,u3,6).

Proof. Suppose that §, up, uz and 6 are in C*([0, L]). Define

X1 0 57 0 0 C — X281UQ
yi=(hxa | +677 [ 0| + 7’1 up | +hxo6) 0| +6) 0 .
0 us 0 0 0

Clearly y;, € W22(S). The convergences of uy, 1, uy, » and uy, 5 follow trivially since
h=16, — 0. We have

0 0 57 0 —0dqlp 0 0
Vhyh:Id3X2+5Z’1 L +fh d11ip 0 +hxz5;rl 0 0

81u3 0 0 0 819 0

016 — x2011up 0
+6) 0 0].
0 0

Since h=15;, — 0, the convergence of Ay, follows. Moreover, we have

2(01¢ — xp0 0
vhygvliyh_ld_52< ( 16 02 11”2) 0) +0(5Z)'

Differentiating the rescaled gradient, we have that

0 0

WV =0 0 0 |+,
8111/!3 819
. (00 1
02Viyh = 7L 0 0] o6 ).
9.6 0

This easily implies that
L L
Ei(n) =4 [ o Pdx+ [ uusPdx+2 [ 1016 dx = 1Y%y, u5,6).
Q 0 0
By a standard density argument the proof is concluded. O

5.3.3 TI'-convergence for a = 4

Theorem 5.3.4 (liminf inequality). Let (y,) C W>2(Q; R®) be such that E}(y;) < C.
Then

liminf E(y;,) > 1V¥(uy, us,0).

h—0+

where uy, uz, and 0 are the one given by Proposition 5.3.1.
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Proof. Let ij, be the deformation given by Proposition 5.3.1. Firstly, note that
Ej(yn) = E}(§). Moreover, by the weak convergence of Aj, in WI2((;IR3*?) we
have

6, (Vi —Idsx2) = A in LP(Q;R¥*?)

for every p < co. Then

52 (Vi 1d5.2) (V3 ~ 1d2) = AT
strongly in L2(Q);R?*2). Thus, by (5.22) it follows that
(;}%(Vh?;fvh?h —1Id)11 — (ATA)11 + 20111 = (01u3)* + 20141 in L*(QQ).
Then,
lim inf Ej () = lim inf Ej (74)

> liminf
h—0t

1 T -
57 | TV~ 1 P dx
L VO

1 2
+—/a~ 24 +—/ 10y 4 2 d
5}3 Q| 119n,3|" dx 5}3 Q| 12]/h,3| X

L
Z/Q|(81u3)2+261u1|2dx+/0 (|911u3]* + 2[010)?) dx
= IV®(uy,u3,0).

O

Theorem 5.3.5 (Recovery sequence). Let § € W'2(0,L), up,uz € W?2(0,L) and
uy € WY2(Q) such that uy = ¢ — x01uy for some & € WV2(0, L). Then, there exists a
sequence of deformations (yy,), C W>?(CQ;R®) such that

() wpy =0, (yn1 — x1) = ug = & — xp01up in W2(Q),
(i) upo = hd, 2 (ynp — hxa) — up in W*2(Q), with uy € W*2(0,L),
(iil) up3 =6, 'yns — uz in W22(Q) with us € W>2(0, L),

(iv) Aj =08, {(Viyn —Idsx2) — A in WY, R3*2) with

0 0
A=1 0 0],
81u3 0

(V) E%(yh) — IVK(ul,ug,G).
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Proof. Suppose that ¢, up, uz and 6 are in C*([0, L]). Define

X1 0 2 (0 0 ¢ — X201
Yy = hxy | + 5}, 0]+ Wh u | + hx2(5h 0] + 5;21 0
0 Us 0 0 0

811/{39
—h&2x, | 6%2/2 | .
0

The convergences of uy, 1, uj, » and uy, 3 follow trivially since h~16, — 0. We have

0 0 52 0 —alug 0 0
Viyn =1dax2+6, | 0 0 +f oy 0 | 4+hxd [ 00
uy 6 0 0 3160 0

018 — x2011Up  —01u3b
+ 67 0 —02/2 | +O(hé}),
0 0
and
0 0
alvhyh =0y 0 0 +0(5h,L2),

811u3 819

1 0 0

Eazvhyh = 511 0 0]+ 0((5h, LZ).
d160 0

In particular, we have the desired convergence of Aj. By some simple computation,
we have

2(01¢ — x011u2) + (01u3)?  9qu36 — dquz0
Vi Viyn —1d = & ( (But 31u23911_ 3)1%9( ) O g ) +0(6})
_ 2
> <2(31§ xzanouz) + (d1u3) 8) 1 o(32).

Putting all the calculations together we conclude that Ej} (y;,) — V¥ (11, u3,6). For
an arbitrary quadruplet (&, up, u3, ) we conclude by density. O

5.3.4 T'-convergence for2 < a < 4

This section is further divided between the two cases h’zéifﬂr — 0, +o00. We start
with the simpler one, in which no constraint on the Gauss’ curvature is present.
T-convergence for h_zéi_"’ — o0

Theorem 5.3.6 (lim inf inequality). Let 2 < a < 4. For every sequence of deformations
(yn) C W22(Q;R3) such that EX(yy,) < C it holds

liminf Ej (y),) > ICVK(u3,6),
h—0t

where us, and 6 are the ones given by Proposition 5.3.1.
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Proof. Let §jj, be the deformation given by Proposition 5.3.1. We have

lim inf E§ (y;,) = lim inf E{ (7
iminf Ej (y,) = lim inf £} (74)

o 1 2 2 1y =2
zllirgglf l&;fz/f)'anyh's' dx+5z2/0|h 01203 dx}

L L
2/ \anug\dez/ 1010 dx = 1<VK (13, 0),
JO 0

that concludes the proof. O

Theorem 5.3.7 (Recovery sequence). Let 2 < a < 4 and suppose that h=26, 7 —
+oo. Let § € WY2(0,L) and u3 € W>?(0,L;R®). Let u; € W?2(0,L) such that
201u1 + (91u3)? = 0. Then, there exists a sequence of deformations (y;,) C W??(Q; R3)
such that

(i) upp = (55727 (yna — x1) — uq in WY2(Q) with u; € W»2(0, L),
i) wpp = o, 2T (ypa — hxa) — 0in W22(QQ),
(iii) wup3 =0, Tyns — s in W22(Q) with uz € W22(0, L),

(iv) Ay =3, " (Viyn —Idsxa) — A in WH2(Q;R3*2) with
0 0
A= 0 o},
81u3 0

Proof. Suppose that uz, 8 € C*([0,L]), so that uy € C®([0,L]). Let

0 0 *alug
A= 0 0 -0 |.
81u3 0 0

We denote by Rj, € C*([0, L]) the unique global solution of the Cauchy’s problem

(v) EE(yn) — I<V%(u3,0).

"X =0 "'X9,A in [0, L],
X(0) = exp(8] ' A(0)).

Note that R"(0) € SO(3) and that
91(R,RT) = 9, RyRT + Ry, (01R;)T = ag‘l(RhalAR; + Rh(alA)TR,{) =0,

that is R;, € SO(3) everywhere in [0, L]. We define

. (O m0)
Y = /0 Ry, (t)eq dt + hxaRpep + 52 0 .
u3(0)



5.3 THE VON KARMAN’S REGIME 125

We have

00
vhyh = (Rh€1 Rhez) +hx281Rh ( 0)
0

00
= (Ryer Ryes) +hé) xRy, A (1 0)
00

0 0
= (Rhe1 Rhez) +I’l(5271X2Rh 0 0].
016 0

In particular, we deduce that

9/

(=]

0 0
RIV,y, = Id3x +hx25,j‘1 (o 0) )

Then
Vvt Viyn —1d = (REVyn) (R Viy) — 1d

2
= 12677223 <(8109) 8) +O(H26 ).

By the assumption h_zéifw — +00 we get that

1
5 | ViV, — 1 Pdx o
h

We move now to the computation of the rescaled Hessian. We have

0 0
01(Viyn) = (01Rper 01Ryed) +67 Ry [ 0 0 | +o(a) 7Y,
d1uz 016
1 0 0
Eaz(vhyh) = (Shnrith 0 0 + 0((5;71).
0160 0

Since rotations do not change the Frobenius’ norm, this proves that Ej; (y;,) —
IVK(u3,0). We are left to prove the convergences of uy, 1, uy, 5, uy 3 and Ay. Follow-
ing [FMP13, Theorem 3.12] we show that Rj, has the following structure:

~ X ~ ~ ~
Ry=1d+6 'A+6772 / " A(s)yA(s) ds + %557‘2,42(0) +0(%73%). (5.29)
0

Indeed, define

~ x ~ ~ ~
Qu(x1) =1d+67 " A(x1) + 672 / 1A(s)alA(s)ds+%5,3’**%2(0).
0
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Observe that Qj, solves the following ODE
-1 i 3r-3 R i 15 X
alQh = 5h QhalA — 5h ) A(S)alA(S) ds + EA (0) 81A

with initial datum
Qu(0) = exp(8) T A(0)) +0(5,7 7).
Then, by Gronwall’s Lemma 2.2.3
Q= R" = 0(5,"7).

Recalling that 201u; = —(91u3)?, by (5.29) we have

_ X1 1 _ _
(Rp)ii=1—6" 2/0 d1uzdqqu3 ds — 55;%7 2(01u3)2(0) + 05, %)

(5.30)
= 1487 %u)(x1) +0(8,77%),
(Ri)12 = O(5;"72). (531)
Then, by (5.30)~(5.31) we have
1 1 *1
Upy = 5277_2(3/%1 —x1) = o UO (Rp)11ds + hxa(Ry)12 — x1| + u1(0)
I I

= Uy — u1(0) + Uy (0) + O(I’l, 5;71) — Uq

in W'2(S). To deduce the rest of the convergences we argue similarly. We have

(Ry)a1 = O(87 ),

(Ry)m = 1+ 0(8772).

Thus,
h h *
un2 = =3 (Y2 —hx2) = = U (Rp)21(s) ds + hxa(Rp)22 — hxa
52 5272 Lo
=0(h) =0

in W22(S). Lastly,
(Rp)a1 = 527131% +0(6,772),
(Ry)z2 = O(8] ),

from which we deduce

1 1 *1
— = —— R ds + hxa(Ry)a2 | + u3(0
Up3 5Z,1yh,3 5 UO (Rn)a1(s) ds + hxa(Rp)s2 | +u3(0)

= Uz — u3(0) + u3(0) + O(l’l) — U3
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in W22(S). To conclude observe that
Viyn —Idsxa = 6] "A+o0(6) ),

so that the convergence of Aj, follows. To extend these results to non-smooth u3
and 6 we just exploit the density of smooth functions in W22(0, L) and W?(0, L)
paired with the continuity of I*VK with respect to the strong topology of those
spaces. O

I'-convergence for h_2§Z_7 —0

We start by proving a Lemma similar in spirit to Lemma 5.2.3, concerned with the
convergence of a suitable rescaling of the Gauss’ curvature.

Lemma 5.3.8. Let 2 < a < 4 and suppose that h’Zéif'y — 0. Let (y,) € W*2(S;R3)
be a sequence of deformations such that Ef (y;,) < C. Then

572 det(Viy,) 0 in M,(S).

Proof. Recall that, defining G" := ViyEViy, — 1d, equality (5.9) holds in the sense
of distributions. In particular, since |Gy || 2 < C3;/, we have that

2-2 1 20 22—
&) det(VEy) | a2y < Crzh VPG | azy. < CH 26,7 =50,
By the boundedness of the energy, we have that (55_27 | det(V2y,) |1 < C, that
gives, up to a subsequence, 55_27 det(V2y,) 5= 01in My(S). O
Theorem 5.3.9 (lim inf inequality). Let 2 < & < 4 and suppose that =25, 7 — 0.

liminf EX (y,) > IV¥5(u3,6),
h—0+

where uz and 0 are the one given by Proposition 5.3.1.

Proof. Let §j;, be the deformation given by Proposition 5.3.1. For every ¢ €
Cé(Q; [0,1]) we get

1
E~ (7 >7/ v2~ 2d
h(yh)—5z_2 Q| nJn|”dx
1

) dx

2 + 2|h_1812ﬂh,3 2 + |h_2822gh,3

_ P
52 /Q @ (1911773

1 - _ _ _ -
+ 2 /0(1 — @) ([9119n,31% + 2/ 101287 31 + |~ 2028 3/*) dx
p (5.32)

= 5z /Q @[O0y + ™ 20niy|? dx — 26, %7 /Q ¢ det(Vi,) dx
b

_|_

52 /0(1 — @) (|0117% — h™ 20209 |* + 4| 01277 %) dx
h

+26272 /Q (1— @) det(V23,) dx.
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Since ¢ takes values in [0, 1] all the quadratic terms are lower semicontinuous with

respect to the weak convergences in L2. Let 77 be the weak limit of (5}1[_7822%,3 in
L%(Q). Note that 77 exists, up to extracting a subsequence, by the boundedness of
the energy. Thus, passing to the limit in (5.32), we get by Lemma 5.3.8

lim inf E2 (y;) = lim inf E%(§
iminf Ej (y;) = liminf £ (7,)
2/090|311u3+’7|2dx
_ 42 2
+ [ (=) (or1us =7 +4/1161) ax
L
— [ onusPd 2/ dusn d / 24
/0|11M3| X+2 | gonusydx+ Q|’7| X
L .
w4 [0 —g)ouoPdx—2 [ (1-g)anuandx
L L
= [ oumsPax+2 [ @ePdx+ [ jydx
0 0 Q
+2/Q(p(611u317—(819)2)dx

2 [ (1= ¢)@uuay = @10)?),

(5.33)

Let

Qf = {X e O: 8111/[377 - (819)2 > 0}
and O~ = O\Q". Picking a sequence (¢,) C C}(€;[0,1]) such that ¢, — xq+
almost everywhere, from (5.33) we deduce by Dominated Convergence Therorem

L L
lim inf E* >/a 24 2/ 2:012d / 24
iminf Ej (y),) > A |011u3] " dx + A |010]" dx + Q|77| X
—1—2/Q 911131 — (010)%] dx > 1V¥5(ug, 0).

This concludes the proof. O

As for the analogous Kirchhoff’s regime, in order to prove the I'-convergence,
we need to construct isometries of thin strips. The arguments are similar to the
one of Theorem 5.2.2: we use a diagonal argument to relax the constraint on the
rescaled Gauss’ curvature. However, in this setting, the isometries we construct
depend on both indices: the one linked to the relaxation and the width of the thin
strip. Thus, we need a careful analysis to show that we can extract a converging
diagonal subsequence.

Theorem 5.3.10 (Recovery sequence). Let 2 < a < 4 and suppose that h_zéiﬂ — 0.
Let & € WY2(0,L) and uz € W>2(0,L;R3). Let u; € W*>?(0, L) such that

201u1 + (81u3)2 =0.
Then, there exists a sequence of deformations (y;,) C W?2(Q; R3) such that

Q) w1 =0, T (yp1 — x1) — wy in W2(Q) with uy € W¥2(0,L),



5.3 THE VON KARMAN’S REGIME 129

(i) 1y, = ho; 2 (yua — hxa) — 0in W22(Q),
(iii) up3 = 5;77]/;1,3 — uz in W?2(Q) with u3 € W>?(0,L),

(iv) A =0, "(Viyn —Idsxz) — A in WY2(Q; R¥*2) with
0 0
A=| 0o of,
81u3 0

Proof. For almost every x1 € (0, L), let c(x1) be such that

lc(x1) |* 4 2001113 (x1)c(x1) — (010)%] = Qs (d1u5(x1),010(x1)).

It is immediate to see that

(x1) = {(alg(xl))z/a“”“"” if 913 (x1) | > [318(x1)],

(v) EX(yn) = IV¥5(u3,0).

d11uz(x1) if [91qu3(x1)| < [916(x1)]-

Thus, ¢ € L?(0, L). Define

_ (911us 010
M= ( 819 c ),

and let (A") C C*([0,L]), (p") € C=([0,L];IR?) be the sequences provided by

Lemma 5.2.6. Precisely, we have |p"| = 1, p" # e, in [0, L] for every n € N, and
defining M" := A"p" @ p", we have M" — M in L? and

L L L
/ |M”|2dx—>/ |M|2dx+2/ | det(M)] dx = 1V¥5(u3, 6).
0 0 0

et e the unique global solution of the Cauchy’s problem
Let R” be the unique global solution of the Cauchy’s probl

(X =06 X, A" in [0, L],
X(0) = exp(3) " A"(0)),
where _
0o 0 —My
A"=1 0 0o -M,|,
My, Mj, 0
and

i) = (M0 00 [ o s

We set di”" = Rl'e; and dg’" = Rler, and we define
29-2
(Sh(y Lll(O)

X1 h
i = 0 + / dy" (s) ds.
5Z_lu3(0) ’
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Let M} = (SzflM” and A} := (5,?71)\”. We are in a position to apply Theorem 2.2.15,
with the choices y := ¥}, dy = dé"”, A = A}, and p := p", up to a continuous
extension in a common neighbourhood of [0,L]. For some ¢, > 0, depending
solely on 7, there are isometric immersions

wf € WE(Q,, R®) N W22 (Q,; R?),
defined by the relation
Wi (P (31, 32)) = T (x1) + %2 (@ () db™(x1)) (P") - (1)

for (x1,x2) € (") 71(Q,) C Qy,, where , > 0. Moreover, w!! satisfies properties
(a)—(c) of Theorem 2.2.15. Here

D" (x1,x2) = x101 + x2(p") H (x1),

is an invertible bi-Lipschitz homeomorphism onto ). For h < ¢,, we define
Ty (x1,x2) :== (x1,hxp) and

Yl = w! o T, € W2, R3).
We start by showing that
L
ES () "% / M2 dx. (5.34)
0
Since wj}! is an isometric immersion, the elastic energy term vanishes. Indeed,
(ViyH)IVy —1d = (Vw) o T,) T (Vw) o T;,) — 1d = 0. (5.35)
By Theorem 2.2.15—(b), we have
Vel (@ (v1,%2)) = (@7 (x1) " (x1)) (5.36)
In particular, defining v} := d1wj, A drwj!, we get
Vi@ (31, 32)) = 5" (x1).
Recall that ®" is invertible. To simplify the notation, let us write 4" in place of
(®")~1. We get
Orwj, = di"(qY),
Q! = di"(q}),
vy = d3" (q7).

Differentiating, we obtain

dnw) = 0yd}" (q7)onqy,
dpwy, = aldg'n(qif)alfﬁr
n
1

Aol = ddi" (q7)dagl.
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Thus, by Theorem 2.2.15—(c),
djwp v = &) M (ah)digt,  ij=1,2.

Note that
VO (x1,x2) = (e1 +x201(p") - (x1)  (p")(x1)),

and so
VO'(Ty) — (e1 (p")*(x1))

pointwise as i — 0. Note also that by continuity of 4", we have
q"(Tn) = 9" (x1,0) = x161 (5.37)

pointwise. Since
Vg = (Vo) (g")

and
w1 L ((py =P
(Vo) —(pn)%< 0 11),
by (5.37) we get that
Vi (Ty) = ef (V") 71 (x1,0) = (pn(il))% ((p"(x1))y —(p"(x1))7)
_ 1 n T
- p;f(xl)(l? (xl))

pointwise as h — 0, where we have used the fact that

o= (%)

In particular, fori,j = 1,2,

8y "9y (Ty) - Vi (Tyy) = ME,(q3(Th)) (35 (Ti)

1 n n — n
- pgz(xfl)Mu(xl)Pi (x1) = Mjj(x1)

(5.38)

pointwise as i — 0, where in the last equality we have used the fact that M" =
Atp" @ p". Recall that, by Proposition 5.2.4, we have

2 2
Y. logwp P =Y |9y - vi >
ij=1 ij=1

Thus, since V%yh = Vzwz o Ty, by (5.38) and Dominated Convergence Theorem,
we deduce

' 2 . 1
5]3_‘" /Q |V%yly1[|2 dx = 55_“ Z /Q ‘aiij(Th) 'V}CL(Th)|2 dx — /0 |Mn|2dx.
' ij=1
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Recalling (5.35), we conclude the proof of (5.34).
We move now to the proof of the convergence of the rescaled displacements.
Define

”2,1 = 55727 (yZ,l —x1),
Upo = h&f27 (Yhp — hx2),
Ups = 5;_7]/2,3/

AL =6, (Vs — 1d32).

Recall that, by the boundedness of the energy (see Proposition 5.3.1), u 1, uy, 5, uj, 5,
and A} converge, up to subsequences, in their respective spaces, that is

upq — Uy in W2(Q),
Up, — 0 in W22(Q),
Upy — Uz in W22(Q),
Al —~ A" in Wh2((; R3*?).

Thus, it is sufficient to identify uf, uz, and A". Arguing as in proof of Theorem 5.3.7,
we have R}l € SO(3) everywhere in [0, L], and

~ x ~ ~
RI =1d+6] A" +5,§"*2/ " A (s)9, A" (s) ds
. 0 (5.39)
+ 50 AN (0) + 08173,

where the big-O notation is used with respect to the convergence h — 0. Thus

- X1 _ 1 - -
(Rpy = 1-5272 [ WM, ds — L2 @uun200) +0(677)

_ 1 292 om 2 373 (540
=1— (W 2+ 05 ),
(R = 0O(6,2), (5.41)
(R = 0(5;"72), (5.42)
(R =1+0(5"2). (5.43)

By (5.36) and (5.40)(5.41), we have

n n(.n 1 (M (gT -
91wy = ()i = 1= 28,7 (M (41))* + 0(6," ),
A (w1 = (RE(g1))12 = OB 2).
Thus,

Prity = 07 (@ (1)1 = 1) = =5 (M gF (7)) 2+ O8] ),

Qull ;=& 2T (W@} (Ty))1) = O(h).
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Since T}, — x1e1 pointwise as i — 0, by the continuity of both 4" and M", it follows
that

1, -
o1l — _E(M?l(xl))zz
azuZ,l — 0.

In particular,

n N 1 1
Lthll Cl - =

2 ), ( _?1(5))2 ds = uf in W22(Q).

Since by Theorem 2.2.15—(a) we have
wt1(0,0) = &, 27 (w})1(0,0) = & "7 (0) = w1 0)
we have c; = u71(0). By (5.42)}~(5.43) and (5.36), we get
(1wf)s = (R} (41)ar = &) Mt (qF) + O(&;"2),
(92w})2 = (R} (41))z2 = O(5 ).
Thus, arguing as before
dufl, = 6, (1] (Ty))1) = MYy (1 (Ty)) + O8] ") = My (x1),
dufy = 0" (h(d2};(Ty))1) = O() — 0.

It follows that -
uj(x1) = c3 —l—/o MY, (s) ds,

where, arguing as before, we get c3 = u3(0). Lastly, by (5.39), we get

0 0
V) =1d+5) " ( 0 0 )+O(5§“).
My (q1) M, (a7)
Thus
0 0
Al = 67 (Vwy,(Ty) — 1d) = 0 0 +o(r ™
h =9 Wi Lh =1 _ _ h
MY (q1(Tw)) My (g7 (Th))

0 0
— 0 0 = A",
My (x1)  Miy(x1)

Since M" — M" in L2, by definition of M" we immediately deduce that

1 S 2
u{‘%ul(o)—i A (61u3(0)+/0 auug(z)dz) ds
1 ™ 5 X1
=n(0) =5 [ @uus(s)2ds = ur(0) + [ 0 (s)ds = .
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where the convergence is in W'2(Q). Similarly,
X1 S X1
uf — uz(0) —I—/O (81143(0) —l—/o d11u3(2) dz) ds = u3(0) —l—/o d1uz(s) ds = uz
in W2(Q). Arguing similarly, we deduce that A” — A in W'2. We are finally in a

position to apply a diagonal argument and construct a diagonal sequence y;, such
that convergences (i)-(v) hold, concluding the proof. O
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6.1 Special functions

We recall here the definition and the main properties of some special functions
that we use in Chapter 7. For further details we refer to the monographs [Erd53;
Leb65].

The Gamma and the Beta functions

The Gamma function is defined as
[ee]
I'(z) = / et dt
0

for z € C with R(z) > 0. It can be extended by analytic continuation to the whole
complex plane, except at non-positive integers. We use the following notable
properties of I':

(i) T(z+1) = zI'(z) for every z € C, z # 0,—1,-2,..., and in particular
I'(n+1)=n!forn € N,

(i) T(z)T (z + %) = 21722 /7T (2z) forevery z € C,z # 0, f%, -1, f%, ..,
(iii) T (%) — V7,
(iv) I'(x +a) ~T(x)x*asx — cofora € C.

The Beta function can be defined in terms of the Gamma function as

_ T()I(y)
By =Tty

for x,y € C with R(x) > 0and R(y) > 0. It easily follows that B is symmetric.

137
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The hypergeometric function

Leta, B,y € Cwithy #0,—1,—2,.... The hypergeometric function » F; is defined
as the power series

- (“)n(,B)n n
L

for z € C with |z| < 1. Here (A), denotes the Pochhammer’s symbol, namely

oF(a, B;y;z) =

Ao =1, A =AA+1)----- (A+n—1) forneN.

If -1 < R(y —a — B), then the series converges for |z| < 1, except at the point
z = 1. The behaviour near the point z = 1 depends on the parameters «, 8, and 1.
More precisely, if R(y —a — ) > 0, the series extends continuously also at z = 1
(see [Erd53, Section 2.1.3—(14)] or [Leb65, Section 9.3]), and we have

LT (y—a—p)
(Y —a)T(7— ) (1)

If vy = a 4 B, from [Erd53, Section 2.3.1-(2)] we can deduce that

oFi(a, B+ B;z)  T(a+pB)

lim »F(a, B;7;2) = 2F1(a, B;151) =
z—1

Jn T oe(i=2)  ~ T(@T(p) (62)
while if R(y —a — B) <0, from (6.1) and [Erd53, Section 2.1.4—(23)] we have
lim ZFl(DC/ﬁ;r)/;Z) _ F(’Y)F(IX +:B _')’) (63)

-1 (1—z)r*F  T(a)T(B)

Note that if « or 8 is a non-positive integer, then the hypergeometric function
reduces to a polynomial in z. In particular, it holds that

2F1(0,B;72) =1 (6.4)

and
JFi(~1 Bimiz) = 1— gz. 6.5)

The Appell function of the fourth kind

Letwa, B, 7,7 € Cwithv,9" #0,—1,-2,.... The Appell function of the fourth
kind F; is defined as the double power series

Ey(a, B;7,75x,y) = io mxmy”

for x,y € C with \/|x| + /|y| < 1. Since F; is analytic in its domain, it follows
that

lim Fy(e, B;7, 75 %,9) = 2F1(a, B; 75 y) (6.6)

for every y € C with |y| < 1.
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The Bessel function of the first kind

Let v € C. The Bessel function of the first kind of order v is defined as
= (1) (x/2)

Ju(x) = n;) Tn+ DI(n+v+1)

for x € C\ (—o0,0). We recall the asymptotic behavior of J, at 0 and +oo:

xl/

~N ——— + .7
Ju(x) 2T(1+v) asx — 07, (6.7)
2 T T
Ju(x) ~ 4/ — €os (x V- Z) , asx — 409, (6.8)
see [Leb65, Section 5.16]. Moreover, we use the following identity
2
]7%(2) =4/ p cos(z) forz #0, (6.9)

that can be found in [Leb65, Equation (5.8.4)].

6.1.1 Integral formulas

We recall here some integral formulas involving the special functions we intro-
duced.

Formula 6.1.1 [GR07, Formula 3.621-5]. We have
LI -1 _lprv
/0 sin 7 (x) cos” ™ (x) dx 28(2, 2), R(u), R(v) > 0.
Formula 6.1.2 [GR07, Formula 3.665-2]. For R(y) > 0and |a| < 1 we have
m sin?#~1(x) 1 1 1,
=B(u, 2 )oF (v,v—pu+ s u+ =;a2).
/0 [+ 2acos(x) + )7 (”’z)z (v ”+2’”+2’“>

Formula 6.1.3 [GR07, Formula 6.567-1]. For b > 0, ®(v) > —1, and R(p) > —1 we
have

1 2°T 1
/O xv+1(1 _ xz)P]V(bx) dx = %Ivﬁo-&-l(b)'

Formula 6.1.4 [Bai36, Formula 7.1]. Provided that

RA+pu+v+p) >0, RA) <=, c>la|+]b, (6.10)

N O1

we have
/Ooo x)‘*l]v(ax)jﬂ(bx)]p(cx) dx

B M1 T (A A+ p+v+p))
AT+ DT(v+ D)1 - S(A + v —p))

1 1 b a?
><F4(§(/\+y+v—p),i(/\+y+v+p);pt+1,1/+1;C7,C7)-

Formula 6.1.5 [GR07, Formula 3.251-1]. For R®(u) > 0, R(v) > 0, and A > 0 we

have ) .
p=1pq _ JAw=14. _ Lp(H
/o P (1 = xM)V T dx /\B(/\’V>'
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6.2 Fourier’s transform

We recall here the definition of the Fourier’s transform of a tempered distribution,
and a few properties that are useful for our purposes.
Let S(R?) denote the Schwartz class of rapidly decreasing functions, namely

S(R?) := {¢p € C®(R?) : sup [xPd*¢p(x)| < 0, Va, p multi-index},

where for a multi-index g == (By,...,B4) we write ¥ = [T%_, xPi. We endow
S(R?) with the Frechet’s topology induced by the seminorms

[Plap = sup 1xPa%¢), a, B multi-indices.
xeR4

Let S’(R?) be the dual space of S(IRY), that is, the space of tempered distri-

butions. Following [Fol92], we define the Fourier’s transform fof a function
f e S(RY) as

£(&) = x)e ¢ dx )
F@) = [, feia 1)

for & € R%. Note thatif f € S(R) then f € S(RY). If T is a tempered distribution,
its Fourier’s transform can be defined by duality, namely

(T,¢)=(T,§) V¢eSR.

If f € LY(RY), then clearly f € S'(R%), its distributional Fourier’s transform f can
be identified with a C°(R?) function, and it coincides with (6.11). A result that is
crucial for our arguments in Chapter 7 is the Fourier Inversion Theorem, that we
recall here.

Theorem 6.2.1 (Fourier Inversion Theorem). Let f € LY(R?) N CO(RY). Suppose
that f € L1(R?). Then

1
f(X) = (27’[)d

H’{d f(@)e¥ e VxeRL 6.12)

For a proof, see for example [Fol92, p. 244]. As a remark, observe that the
continuity of f is a necessary condition that follows directly from (6.12).

The Fourier Inversion Theorem also holds for tempered distributions. Precisely,
if T € §'(RY), then

— 1 T = d
(T.9) = (T8 VSR, 6.13)

where ¢_(x) := ¢(—x). However, equality (6.13) holds only in the sense of dis-
tributions, while for our purposes we need a pointwise equality as in (6.12). In
the next remark, we point out that Theorem 6.2.1 still holds under slightly milder
integrability conditions for f.

Remark 6.2.2. Theorem 6.2.1 continues to hold (with equality a.e. in Equa-
tion (6.12)) if f € S'(R¥) N LL (R¥) and f € L'(IR?). Firstly, note that the Fourier’s

loc
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transform of f has to be computed in the distributional sense. However, the Four-
ier’s transform of fcoincides with the classical one. Moreover, by the Fourier
Inversion Theorem for tempered distributions and Fubini’s Theorem, we have that
for any test function ¢ € C*(IR¥)

- (2711)‘1 /le 9 '/]Rd‘i’(—x)e"""‘fdx dc

- 0 T

Then, we can conclude by the Fundamental Lemma of the Calculus of Vari-
ations. Note that the hypothesis f € L' (IR) is crucial to apply Fubini’s Theorem.
Moreover, as a by-product, f must have a continuous representative.

If f is a tempered distribution that can be identified with an L! function whose
Fourier’s transform is L!, the Parseval formula holds.

Lemma 6.2.3 (Parseval’s Formula). Let f, g € L'(IRY) be such that f, § € L'(RY).
Then f, g, f, § € L>(R?) and we have

[ @3 ax= [ Feze)
where Z denotes the complex conjugate of z € C.

Proof. Note that, by the Fourier Inversion Theorem 6.2.1, both f and g are continu-
ous, whereas fand g are continuous by definition. Thus, to show that f, g, f, and g
belong to L2(IRY), it is sufficient to prove that they tend to zero at infinity. Without
loss of generality, we show the argument for f. Since f € L'(RY), by density
of S(RY) there is a sequence (¢") C S(IR?) such that ¢" — f in L. Defining
¢" (x) :== ¢"(—x), by the Fourier Inversion Theorem 6.2.1 we have

sup [f(x) = @ (x)| < |f — ¢"llps =0,

x€R4
that gives the uniform convergence of ¢" to f. Since " € S(R?), we get f — 0 at
infinity.
It follows that f, g, f, & € L>(R?). Then, we can conclude by the following
chain of equalities:

[ @3 = [ Fgedr= [ [ [ F@eie dé] g(x)dx

= [, T@e g dzax = [ Fe)g(e)de,

where we have applied the Fourier Inversion Theorem 6.2.1 and Fubini’s Theorem.
O
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Remark 6.2.4. Lemma 6.2.3 also holds requiring different regularities for f and g.
This is clear observing the proof. Indeed, we just need to grant that the L? inner
product is well-defined, that the hypothesis of the Fourier Inversion Theorem are
satisfied by one of the functions, and that we can apply Fubini’s Theorem. For
example, suppose that f € LI (R?) N S'(RY), g € L}(RY) with compact support

and f, g € L'(RY). Then, the integral

[ () d

is well-defined, by Remark 6.2.2 the Fourier Inversion Theorem holds for f, and
sinceboth f, ¢ € L'(IRY) and e=*¢ € L®(R? x R¥) we can apply Fubini’s Theorem
to change the order of integration.

In Chapter 7, we compute various Fourier’s transforms. If f is a radial function,
we resort to the following formula.

Formula 6.2.5. If f is a radial function, that is, f(x) = fo(|x|) for some fo, then so is f
and we have .
—~ 27T)2

f(g) = ( 5)7

g2

We refer to [Fol92, eq. (7.38)] for a proof. Formula 6.2.5 can be applied also
to more general objects with a radial symmetry. As an example, consider y :=
H?=1L_9B;. One may be tempted to apply (6.14) with fo(r) := 51 (r), interpreting
the integral in a distributional sense. Indeed, we have that

| A1y et ar (6.14

~ :(zn)%
() FIE

This can be obtained, for example, following the computation in [Gra08, Appendix
B.4].

Another class of tempered distributions whose properties are preserved by
the Fourier’s transform are the homogeneous ones. We say that a tempered
distribution T € S’(R?) is a-homogeneous if, for every test function ¢ € C and
for every A € R we have

Ty (2. (615)

(T, 9r) = AT, ¢),
where ¢, (x) := A%p(Ax). The Fourier’s transform maps a-homogeneous tempered

distributions to (—d — a)-homogeneous tempered distributions. Indeed, we have
the following Lemma.

Lemma 6.2.6. Let T € S'(RY) be an a-homogeneous tempered distribution. Then T is a
(—d — a)-homogeneous tempered distribution.

Proof. Set ¢, (x) :== A%p(Ax) for some ¢ € C*(R?) and A € R. We have

$A(8) = - P (x)e ™ C dy = A9 ./n.zd Pp(Ax)e ¥ dx = ./u.ad ¢(y)e—iy'§ dy

=5 (%) = 1@
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Then,

~

(T, ¢0) = (T, ¢2) = AUT, (§),-1) = AT(T, §) = AT, 9).
O

In Chapter 7, we consider an interaction kernel defining a (—«)-homogeneous
tempered distribution, with « € (0,d). It follows that its Fourier’s transform
is (« — d)-homogeneous. It is useful to note that in that case, it is enough to
consider the restriction of the Fourier’s transform to R? \ {0}. Recall that given a
distribution T € D’ (IR), its restriction to an open set A C R? is a distribution in
D'(A).

Lemma 6.2.7. Let T be a (—a)-homogeneous tempered distribution with « € (0,d).
Suppose that T’Rd\{o} can be identified with a function f € L. (R?\ {0}). Then

loc
fe Ll (RY) and T = f, in the sense that

loc
(Lg)= |, fx)o(x)dx  Vge C(RY).

Proof. Note that f is (—a)-homogeneous in the classical sense. In particular, since
« € (0,d), it is integrable near the origin, thus f € L] C(]Rd ). Define the distribution
G =T — f, thatis

(G ) =(L.¢)— | fH)p(x)dx Vo€ C&(RY).

Note that G = 0 on R?\ {0}. In particular, the support of G is contained in
the singleton {0}. By a classical result on distributions (see for example [GS16b,
Chapter II Section 4.5]), G has the following form:

G= Y AgDPs,

|Bl<m

for some m € IN and Ay € R, where B is a multi-index. Note that G is (—a)-
homogeneous. Since DPdy is (—d — |B|)-homogeneous and homogeneous distri-
butions with different homogeneity are linearly independent (see, for example,
[GS16a, Chapter I Section 3.11]) it follows that Ag = 0 for all |8 < m, concluding
the proof. O

An example of homogeneous tempered distribution that we use in Chapter 7,
is pr(x)|x| 5K, where py is a harmonic homogeneous polynomial of degree k. In
the next Lemma, we compute its Fourier’s transform following [Ste71].

Lemma 6.2.8. Let py be a homogeneous harmonic polynomial of degree k > 0. Let
s € (0,d). Then, the Fourier’s transform of py(x)|x| =% is the map

T k+d—s
e (ifatont &= LR (6.16)
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For a proof of Lemma 6.2.8, we refer to [Ste71, Chapter II Equation (33)]. Note
that Equation (33) holds for k > 0, even if it is stated in [Ste71, Theorem 5], only
for k > 1. We also point out that [Ste71] uses a slightly different definition of
Fourier’s transform, thus the coefficients in (6.16) are different from the ones in
[Ste71, Equation (33)].

In the rest of the section we recall a few properties of the Fourier’s transform of
Radon measures. Let u € M, (IR?) be a finite Radon measure in R? with compact
support. It is easy to see that 4 € S’(R?). By definition of Fourier’s transform and
an application of Fubini’s Theorem

@)= d) = [, [ e Eaxau@) = [ ¢@x) [ e au(e)ax
Since the map .
X /]Rd e E du(¢)

is smooth by Dominated Convergence Theorem, we have fi € C*(RR?). Note that
a stronger result holds in a more general setting: the Fourier’s transform of a
compactly supported distribution is analytic (see [H6r76, Theorem 1.7.5]).

Recall that given two distributions F, T € D'(R?), where T has compact
support, the convolution F * T is well-defined as an element of D'(R?) (see, for
example, [Hor76, Definition 1.6.2]). Precisely, it is the unique distribution G €
D'(RY) such that

Fx(Txdp)=Gx¢p VY¢e CP(RY).

If F happens to be also a tempered distribution, then F x T € S'(R?). In the last

case, it holds that F«T=F T, see [Hor76, Theorem 1.7.6]. Note that the product
FT is well defined as a distribution, since T € C*(R?).

6.3 Spherical harmonics and Sobolev spaces on sphere

We recall here some results on spherical harmonics and on Sobolev spaces on the
sphere. As it is customary, we write S~ for the (d — 1)-dimensional sphere in
R?. We use Aga-1 (or Ag if there is no ambiguity on the dimension) to denote the
Laplace-Beltrami operator on $%~1. Recall that Ags—1 can be defined as

Aga-1f(x) == Ag(x), (6.17)

where A is the standard Euclidean Laplacian and g(x) := f(x/|x]).

A spherical harmonic of degree 7, usually denoted as Y}, is the restriction to the
sphere of a harmonic homogeneous polynomial of degree n. Despite its name, Y, is
not harmonic on the sphere in the sense of the Laplace-Beltrami operator, meaning
that Ags 1Yy # 0. This is clear by identity (6.17). However, Y is an eigenfunction
of —Ags 1 with eigenvalue n(n + d — 2), that is

—Agi 1Yy =n(n+d—2)Y,. (6.18)

Clearly, spherical harmonics are continuous functions on $¢~. In particular, since
89-1 is compact, they are bounded. In Chapter 7, we use the following explicit
bound, depending on n and 4.



6.3 SPHERICAL HARMONICS AND SOBOLEV SPACES ON SPHERE 145

Lemma 6.3.1. Any spherical harmonic Y, of degree n satisfies

d\ N(n,d
Ml <1 (5) 222y,

27?2
where N (n,d) is the number of linearly independent homogeneous harmonic polynomials

of degree n in d variables.

A proof can be found in [EF14, Proposition 4.16]. Next, we recall the explicit
expression of N(n,d).

Lemma 6.3.2. We have

_2n+d—2<n+d—3) 2n4d—2T(n+d—2)

N(n,d) 1 n—1 n T(mI(d—1)

We refer to [EF14, Theorem 4.4] for a proof.

By an application of the Gram-Schmidt algorithm, we can construct a set
{Y5tiz1,.. N(na) of spherical harmonics of degree n that are orthonormal in the L2
sense, i.e.,

/S L Yiviani =g,

where J;; is the Kronecker’s delta and H9~1 is the (d — 1)-dimensional Hausdorff’s
measure. Moreover, the set

{Yi:neN,i=1,...,N(nd)}

is an orthonormal basis of L?(S%1).

We move now to the definition of Sobolev’s spaces on the sphere. Given a
function f € L2(S?1), where L? is to be intended with respect to the (d — 1)-
dimensional Hausdorff’s measure, we can write f in spherical harmonics as

o N(nd) o
=Y Y Ay, (6.19)
i=1

n=0 1

By Parseval’s identity,
o0 N (n,d

I = L X

=1

)
(AL

Inspired by (6.18), we define the action of the fractional Laplace-Beltrami operator
on f as

co N(nd) o
(=Ag1)*f =Y, Y [n(n+d—2)*A,Y;. (6.20)
n=0 i=1

Clearly, the series on the right-hand side of (6.20) might not be convergent. We
define the space W%?(S%~1) as the set of functions f € L2(S%~!) such that

(—Agi1)2f € L2871,
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Decomposing f € L?(S89"1) as in (6.19), by Parseval’s identity we equivalently
have that f € W%2($9~1) if and only if

oo N(nd
Z Z (n+d—2)]*(A)? <

We endow W%?2(S9~1) with the norm

- lhwez 5= {1 - [z + [ (=Aga-1) 2 ()| 2-

Theorem 6.3.3. The space W*2(S%~1) is continuously embedded in C°(S%~1) for a >
(d—1)/2.

Proof. 1t is sufficient to show that

£l < CIIf [z (6.21)

Indeed, by definition, any function in W%?(S?~1) can be written in spherical

harmonics as
N(n,d)

=Y 3 Ay
n=

with
N(n,d) N(nd)

Y Y [nn+d - 2) (AL

i

>

n=0 i=1 n

Il
o
I
—_

Since spherical harmonics are continuous, f is the W%2-limit of continuous func-
tions, and by (6.21) the limit is also uniform. Thus, f is continuous and by (6.21) the
embedding is continuous. To prove (6.21), we proceed explicitely. By Lemma 6.3.1
and Hoélder’s inequality, we have

o ||N(nd) ) d N d N(n,d)
Ifllee < Y| Y ALY <Y 1"(2) : Z Ay
n=0 i=1 L n=0 72 2
1

© d\ N(n,d) (Nod - \?
= Z T (2> (71) ( AL 2

n=0 272 i=1

© N(n,d) . N(n,d) ) 2
<cC < +d—2)]2 AL
L atura s (Zl |
1
d N(n,d) :
<c (ZO [n(Hd_z)]“) 1(Asi ) fllz
> N(n,d)
<C "
= (7;] [TI(TI—I—d 2)]04) Hf”W 2
We are left to prove that
> N(n,d)
< o0, 6.22
,;)[n(ner—z)]“ (6.22)
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By Lemma 6.3.2 and the asymptotics of the Gamma function (iv) in Section 6.1 we
have
N(n,d) ~ n®2, n — oo.

Hence, since « > (d — 1) /2, (6.22) holds. O

6.4 Capacity

In this brief section we recall the notion of capacity of a set and its basic properties.
We refer to [Lan72] for a complete treatment. Let s € (0,d) and let K C RY be
compact set. Define

osi) = [, [, =y an(x)duly),  pe PK).

It is a classical result in potential theory that either I{;O,S = 400, Or Iilgo,s admits a
unique minimizer yg. For the existence, one can argue by the Direct Method of the
Calculus of Variations. Indeed, any minimizing sequence y,, admits a subsequence
converging narrowly (recall that all the measures y;, have a common compact
support), so that the narrow limit y is a probability measure on K. Since I{;O,S is
weak-star lower semicontinuous (see, for example, [Lan72, Equation (1.4.5)]), y is
a minimizer. A proof of the uniqueness can be found in [Lan72, pp. 131-133], but
can also be deduced as a corollary of Theorem 7.2.1.

We define the s-capacity of K as

1

min IR, (1)

4

Cap,(K) =

with the convention that Cap,(K) := 0 if Iilgo,s = +-o00. Note that we are not using
the notation of [Lan72], where Cap, is called (d — s)-capacity. For a general set

E C RY, one can define the inner and outer s-capacity as follows:
Cap,(E) := sup { Cap,(K) : K C E compact},
Cap,(E) := inf {Caps(G) tECG open}.
A set E C RY is said to be s-capacitable if Cap,(E) = Cap,(E), in that case we

just write that its s-capacity is Cap,(E). One can prove that every Borel set is
s-capacitable (see [Lan72, Theorem 2.8]).

6.5 Circulation and curl

We conclude the chapter recalling some simple results regarding the curl of a
matrix-valued field. Let QO C R? be a bounded and Lipschitz domain. Given a
matrix field g € Lll0 C(Q; IRZXZ), we define the distributional curl of its nth column,
for n = 1,2, as the distribution

(curl(Ben), ¢) == /Q Ben- V¢ dx, ¢ € CP(Q),
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=0

Then, one can define the vector-valued distribution curl(f) as the vector whose
nth element is curl(Be, ). When the field B is smooth, then Stokes’” Theorem gives

/chrl(ﬁ) dx = /E)Q ptdH!,

where

where t is the tangent vector’ to dQ). The last integral is usually called the circula-
tion of B over d(). As it is usually done in classical trace theory, one can define a
tangent trace for matrix-valued fields in the following space:

L2 (O, R**?) = {B € L2(O; R**?) : curl(B) € L*((;R?)}.

curl

Precisely, there exists a unique continuous operator

Ty : L2 (O R¥2) — W 22(90; R?)

curl

such that, for

B € CUURY?) N LE (G R),
it holds T;(B) = B anl, where t is the tangent vector to 9 (see, for example,
[RJ99, Chapter IX, Theorem 2]). The Stokes’ theorem holds in Lgurl (C; R?*2) in the

distributional sense, that is

/Q curl(B) - pdx = /Q BIV@dx + (Ty(B), T($))

for every ¢ € W2(Q;R?) and B € L2 ,(Q; R?**2), where T is the standard trace
operator on W2,

When 0} is the union ot two connected components 7y; and 7, then one can
identify W~ 12 (003; R?) with
W22 (41 R2) + W22 (15, R?).
The Stokes’ theorem becomes

[ curl(B)-gdx = [ pIVpdx+ (1) (B), T7(9)) + (T/*(B), T(9)).

It follows that, if B € L2 ,(Q;R?>*?) has zero curl, then

curl
(T (B), T (¢)) = —(T;*(B), T"(¢)),

that, in some cases, can be interpreted as the classical principle of path equivalence
for conservative fields.

If Q) is simply connected and B € L2_,(Q;R?**?) has zero curl, by a simple
approximation argument one can show that § = VP, for some potential P ¢
W12(Q;R?). If Q is not simply connected, then one has 8 = VP only locally in Q.

!The orientation of the tangent vector t is chosen taking the outer normal vector and rotating it
counterclockwise by /2.
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In Chapter 8, we are interested in fields B that are piecewise constant on a
finite polyhedral Cacciopoli’s partition. Recall that a Cacciopoli’s partition is a
partition of Q) consisting of sets with finite perimeter. In this case, curl(p) can only
concentrate on the straight interfaces between the elements of the partition. In the
next simple Lemma, we clarify the cases where no curl concentrates at an interface.

Lemma 6.5.1. Let Q C IR? be an open set and let {P; : i = 1,...n} be a finite polyhedral
Caccioppoli’s partiton, that is,

1. Q = U P;and Per(P;) < +oo,
2. P is a polyhedron with boundary given by straight interfaces Sq,...,Sy, i,
3. P; N Py is either empty or is a common interface Sj; = Sy, wheni # m.

Let ¢ : N xIN — IN x IN be such that Sj; = Sy(;. Let p: QO — R?*2 pe a
matrix-valued field piecewise constant on the partition {P;}, that is, p = M; on P;. Then

n n;
Cuﬂ(‘B) = — Z Z MiVj,iH1 |_S]',l',
i=1j=1

where v;; is the tangent vector obtained by rotating counterclokwisely of 7t/2 the unit
normal to S; ; pointing outside of P;. In particular, if (M; — My, )vj; = 0 for some j and
m such that o(j,i) = (k,m), then S;; = So(ji) is not contained in the support of curl p.

Proof. By an application of Stokes’ Theorem, we have that for every ¢ € C*(Q;R?)
n . n . 1
(curl(B), §) = Z/ MV dx = — Z/ Mt-¢pH
i=17Pi i=1 7P

n n;
£ 5[ e
ji

i=1j=1

concluding the proof. O






Nonlocal anisotropic
energies with physical
confinement

7.1 Assumptions and main results

Let P(IRY) be the space of probability measures on R?, d > 2. We consider the
repulsive interaction energy

L= [, [ Wels =y du(x)an()

for u € P(R?), where the interaction kernel W, for s € (0,d), is of the form

Wi (x) = — <I>( x) (7.1)

INEGANE]]

for x # 0. Here, the profile ® : 8?1 _ R is a continuous, even, and strictly
positive function.
Given a compact set E C R?, we define the confinement potential

0 ifx € E,
VE(X) = {

400 otherwise.

The attractive-repulsive energy we study is then
(o) = L) + [, Ve() du(x)

for u € P(R?). Clearly, minimizing IF over P(R?) is equivalent to minimizing I
over the set of measures u € P(R?) with supp u C E.

151
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For the choices E := B; and ® = 1 we denote ISB I as Iilzé ;- The minimizer of

Iisé, ; is given by
a0 )T L LB ifd—2<s
Hiso,s * Cs,d/Hdil L 9B, ifs<d-2,

where c, 4 is a normalization constant (see Lemma 7.3.1 for its exact value).

We focus on super-Coulombic interactions s > d — 2, and confining sets E given
by ellipsoids. Our main result is the following.

Theorem 7.1.1. Letd > 2,s € [d —2,d), and let W; be as in (7.1) with ® : g1 4 R
a continuous, even, and strictly positive function. Assume that W is continuous and
non-negative on R\ {0}. Let E C R be an ellipsoid of the form E := RDB; for
some R € SO(d) and some positive-definite d x d diagonal matrix D, and let T be the
map TE(x) := RDx for x € R?. Then the unique minimizer of IE over P(R?) is the
push-forward of the measure piso s by the map T, that is, the probability measure

-1 r(1+3)
E ‘E‘ d s—d
Ps = I(1+5)r(1+5%)
(H*1(3By) det D) ' [D~2RTx|1H4 1 (x) L OE ifs=d—2.

(1—|DRTx2) T LU x)LE  ifd—2<s,

Surprisingly, the minimizing measure u% is completely independent of the
profile ®, and its support is fully determined by the confinement term. It is
natural to ask whether this phenomenon occurs also in the sub-Coulombic regime
s < d — 2. In Section 7.4 we give a negative answer to this question: we consider
E := B;, and we show that, for a suitable profile ®, the measure cs,de’1 L 9B,

does not satisfy the Euler-Lagrange conditions for 15El whens <d —2.

LRI
Figure 7.1: Approximated optimal distributions for d := 3 and
s := 1/10, with profiles ® = 1 (left) and & := 1 + x% (right).

Hence, for 0 < s < d — 2 the anisotropy ® does play a role in determining the
energy minimizers, unlike for s > d — 2 (see Figure 7.1).
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7.2 Existence and uniqueness of minimizers

We start the chapter by proving the existence and uniqueness of minimizers and
their characterization. This result is by now standard, but for the convenience of
the reader we give a self-contained proof.

Theorem 7.2.1. Let W be a kernel of the form (7.1)with s € (0,d) and let ® : $9~1 — R
be a continuous, even, and strictly positive function. Assume that Wi is continuous and
non-negative on R% \ {0}. Let E C RY be a compact set of positive s-capacity. Then the
functional IE has a unique minimizer y over P(R?). Moreover, y is the unique measure
in P(IRY) for which there exists a constant C > 0 such that

suppu C E, (EL1)
Wsxu)(x) =C  for y-a.e. x € supp i, (EL2)
(Ws s u)(x) > C  forevery x € E\ N with Cap,(N) = 0. (EL3)

Proof. Existence. Since ® is continuous and strictly positive there exists a constant
C > 0 such that

Is(u) < C/]Rd [x =yl du(x)duly) Ve P(E).

In particular, since Cap(E) > 0, inf, cp(re) IF(p) < +oo.

To prove existence we use the Direct Method of the Calculus of Variations.
Let (#,) C P(R?) be a minimizing sequence. Without loss of generality we can
assume that y,, has support contained in E for every n € IN. Then, the sequence
(un) is tight, and so, up to a subsequence, it converges narrowly to some measure
. In particular, y is a probability measure and has support contained in E. Since
I is lower semicontinuous with respect to the weak-star topology of M (R%), we
conclude (see, for example, [Lan72, Equation (1.4.5)]).

Uniqueness. We move now to the uniqueness of minimizers. The objective
is to show that I is strictly convex on the set of probability measures with finite
interaction energy and compact support. Since any minimizer belongs to this set,
as a by-product we get uniqueness. Firstly, note that W is a tempered distribution,
and by Lemma 6.2.7 we can identify Wi with its continuous restriction to R? \ {0}.
We show that, given two probability measures p1, yp € P(R?) with compact
support such that I;(p1), Is(p2) < co and pq # pip, it holds

/Rd W s (p1 — p2) d(p1 — p2) > 0. (7.2)

Indeed, if this is the case, we immediately deduce strict convexity noting that, for
te(0,1),

I(tpr + (1= t)pz) — ths(p1) — (1= £)Is(p2)
= —t1 =) [ Wes (= p2) d(us = pz) < 0.

In order to prove (7.2) we start by showing that, for every finite positive measure
# € My(R?) with compact support, it holds

. I
J Wernan= [ W@Ia@)Paz, 7.3
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where the equality is to be understood in the sense that either both sides are finite
and coincide or both sides are equal to +co.

Let (p¢) be a family of standard mollifiers and define y, = p * p.. The first
step is to prove (7.3) for . Note that . € C¥(R?) so that ji € S(R?). Moreover,
since W is a tempered distribution and . has compact support, the convolution
Ws * pte € S'(RY) and mg — W.Ji; (see also Section 6.2). Since W is (s — d)-
homogeneous, it behaves as |¢|*~ at infinity. Then, by the fact that 7i, € S(R?),
we have V/\Zﬁs € L1(R?). Thus, we are in a position to apply Parseval’s Formula
(see Lemma 6.2.3 and Remark 6.2.4) and deduce that

SOV me) ey = [ W@ e(@)e@) de
o GG

R4

(7.4)

where we have used the fact that W is real by parity. This concludes the proof of
(7.3) for pe.

We wish now to pass to the limit as ¢ — 0. Firstly, note that ji; = 7ip,. Indeed,
u has compact support and p; is a Schwarz function. Moreover, p;(x) = p1(ex), by
definition of standard mollifier. Thus, i — i pointwise. Note also that |p:(&)| < 1.
We distinguish two cases: if W;|ji|2 € L}(IR?), then we can pass to the limit in the
right-hand side of (7.4) by Dominated Convergence Theorem; otherwise, we apply
Fatou’s Lemma to deduce that the limit is +oo (recall that 1//\7S > 0). In any case,
we have

[ V@R~ [ W@ P de.

For the left-hand side, we note that
/W(Ws * pe) (X) pe(x) dx = /IRd(Ws *pe % pe) (X —y) dp(x) du(y). (7.5

Let #7e := p¢ * pe. It is immediate to show that 77:(x) = ¢ ~%(p % p)(x/¢) and that p * p
satisfies all the properties of a standard mollifier: it is radial, smooth with compact
support, bounded by 1, and has integral equal to 1. Thus, without loss of generality,
we can suppose that (77¢) is a family of standard mollifiers. In particular, since W
is continuous outside the origin, Ws * 17 — Ws everywhere in R? \ {0}. Let us
denote by Wis° the isotropic Riesz Kernel Wis°(x) := |x|~%. Since the anisotropy
profile ® is continuous on $7~! and strictly positive, there is a constant C > 0 such
that

%W;S"(x) < Wi(x) < CWIS(x). (7.6)

In particular, for e < 1 and x # 0, we have

Wesn)(@) = [ Welynele—y)dy <C [ Wi(ey —x)dy
e (X 1

B . . /el
<C s/ Wiso (1, dy = CYiso / ‘X
<Ce oW (y—x/e)dy s (x)'Bl(O) =/ Y

|x/€f*

(0 Ty —x/e W = V(S (x/e).

< czws(x)/B
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We show that f is bounded, which gives that W * 17, is dominated by W;. Indeed,
for |x| > M, with M > 0 sufficiently large, we have

f(x):/ [©[* dy</ |x[* dy</ Ldy<c.
Bi(0) |y —x[® 7 = JByx) [yl T T By ([x[ =1)5 7

Instead, for |x| < M

1 1 1
gew [ g Lacw] Lacc
fx) o) [y —xF B 1] Y Bua() [P Y

Thus, the supremum of f is finite and so is bounded. As before, we distinguish
two cases: if (x,y) — Ws(x — y) is integrable with respect to the product measure
1 ® p, then we apply Dominated Convergence Theorem; otherwise, we resort to
Fatou’s Lemma. In any case, passing to the limit in the left-hand side of (7.4) (recall
also (7.5)) we get

o Ve p)@pe)dx = [ (Wex o) d
In particular, we have proved (7.3) for finite positive measures . We show now
that (7.3) holds also for a signed measure of the form y; — pp, with yy, pp being

two finite and positive measures with finite interaction energy. First, observe that

by (7.3)
_ A o2
Joa et (i 1) s i) = [ Wiy + P . 7.)

Expanding both sides of (7.7), recalling that both y; and y; have finite interaction
energy, and applying once again (7.3), we get

/Rd W 5 g djiy = /}Rd W # pip djiy = /RdWSm:(ﬁ@) dz. 7.8)
Then, by (7.8), and a further application of (7.3), we deduce
/}Rd W (1 — p2) d(p1 — p2) = /IRd W p dpi + /Rd W * pa dpia
—z/]RdWS*mdM:/Rdmmﬂzdg
[ PPz —2 [ WR(n) de

= [ el =l de.

(7.9)

We are left to prove (7.2). If W; > 0, then by (7.9) we are done. However, some care
is needed if W; > 0. Note that we have W; # 0, since W, # 0. In this case, we
show that for any measure y with compact support the set of zeros

Z(p) = {¢ e R : p(¢) = 0}

has zero Lebesgue measure. Then, (7.2) follows immediately by (7.9). It is well-
known that the zero set of any analytic function has zero Lebesgue measure. For a
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simple proof of this fact, we refer to [Mit20]. As we already recalled in Section 6.2,
the Fourier’s transform of a compactly supported distribution can be extended
to the whole C¥, and this extension is entire. This in particular implies that its
restriction to R? is analytic.

Euler-Lagrange equations. We start by showing that the minimizer y satisfies
the Euler-Lagrange equations. Note that, since min IF < +oc0, ¢ has support con-
tained in E, in other words (EL1) holds and the support of y is compact. Consider
the variations (1 — &)y + ev, where v € P(R?) has support contained in E and
finite interaction energy Is(v) < +co. Then, by minimality, for every e € (0,1)

() < L((1—e)p +ev),

from which we deduce
eZ/IRdWS*(y—v)d(y—v)+2€/RdWS*ydv—28/RdWs*y du > 0. (7.10)

Note that we have used the following rewriting of the energy

L) = [ Wele=y) du(x)dp(y) = [ Vs =) (x) dp(x).
If
/]RdWS*(y—v)d(‘u—v),/IRdWS*‘udv<+oo, (7.11)

we divide (7.10) by € and we pass to the limit as € — 0, obtaining

/]RdWs*deZ/]RdWS*ydy::C. (7.12)

Note that (7.12) holds regardless of the validity of (7.11), since y has finite interac-
tion energy. We show now that (7.12) implies (EL3). Suppose by contradiction that
the set

A={xeR": Ws*u)(x) <C}NE

has positive s-capacity. Note that it is s-capacitable since it is a Borel set. Then, by
definition of capacity (see Section 6.4), for n > 1 the set

K= {xEIRd:(WS*y)(x)§C—%}OE (7.13)

has positive s-capacity, and by lower semicontinuity of W; * u (see [Lan72, Lemma
0.1]) it is compact. By definition of C in (7.12), there exists a Borel set B with positive
measure, disjoint from K, such that

Ws xu)(x) >C— %, p-a.e. in B.

By definition of s-capacity of a compact set, there exists a measure 7 € P(K) such
that

Cap,(K)~! = /Rd lx — y| = do(x) di(y) < +oo.
Define, for ¢ < 1, the probability measure

vi=pu+eu(B)v —eulB.
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Then, by (7.12)

c:/w d</W dv=C+ B/W d-—/Wd
o Werpdp < | Wexpdy eu(B) | Werpdv—e [ Woxpdy

SCJFSV(B)(C—%) —sy(B)(C—%) gc_%l

giving a contradiction.

We show now that (EL2) is a consequence of (EL3) and the definition of C.
Firstly, observe that (EL3) holds p-a.e.. Indeed, suppose by contradiction that the
set A is such that (A) > 0, while being of zero s-capacity. Then, for n > 1, the
compact set K as defined in (7.13) has zero capacity and satisfies y(K) > 0. By
(7.6), since IF (1) < +oo, we immediately deduce that Iisos(1) < 4o0. Thus, the
probability measure v := (u(K)) ~!uL K has finite interaction energy Iisos(v) <
+o00, contradicting the zero capacity of K. Therefore, (A) = 0. By definition of C,

C:/ Wi udu = Cu({x € R : (W, —C / Wi # u dyt.
et Ve i = Cp({x (Ws * p)(x) })+{W5*y>c} * pdp

If
u{x € E: Ws*u)(x) >C}) >0

we have a contradiction.

To conclude the proof we show that (EL1){EL3) imply minimality. Let ji, u €
P (RY) satisfy (EL1)~(EL3) for some constants C, C > 0, respectively. Integrating
(EL2) we deduce that

= [ Wexndn,
C:A{dWs*ydy.

For e € (0,1), define y¢ = ey + (1 — €)ji. Arguing as before, we can show that
(EL3) holds also p-a.e. (resp. ji-a.e.). Thus, we have

IE (pe) :s/]RdWS*‘ud‘ug—l—(1—8)/}1{‘11/\/5*;261;45 >eC+(1—¢)C
= s/IRdWs*ydy—l— (1—8)/]RdWs*ﬁdﬁ =el(u)+ (1 —¢)Ls(f1).
Since I (pe) = Is(pe) and I is strictly convex (see the proof of uniqueness), we

conclude that p = i, showing that the only measure satisfying the Euler-Lagrange
equations is the minimizer. O

7.3 Characterization of the minimizer in the super-
Coulombic case

In this section we prove Theorem 7.1.1. A general ellipsoid in R centred at the
origin can be described as E := RDBj, where R € SO(d), D is a positive-definite
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d x d diagonal matrix, and By is the closed unit ball centred at the origin. Given an
ellipsoid E := RDB1, we define the linear map TF(x) := RDx for x € R¥.
For any g > d — 2, we define

q-—

[ .
{cq,du— X2) 2 LAx)LB  ifg>d—2, _

CoaMH? 1L 0B, ifg=d-2,

where ¢; 4 is a normalization constant so that i, is a probability measure. For
completeness, we compute it in the next Lemma.

Lemma 7.3.1. We have

B r(1+1) 4 TA+19) ,
|By| =Tl 2 ifg>d—2,
Cpd = TA+2)ra+%45) F+%5°
: ) o
(K 1(0By) ' =t (22) ifg=d—2.

Proof. For q = d — 2, there is nothing to prove, so we focus on the case g > d — 2.
By Formula 6.1.5withy =d,v = (g —d+2)/2,and A = 2, we have

—d 1 q—d
1— %22 4 :/ / =11 - p?)' 7 dpd
L a1 dpde

1. d g—d+2 JT(1+ 59
= ~H"1 (0B B<,> —pp o2
M BB (5 A D
where we have used that H~1(9B;) = ZH%/F(d/Z). O

Fors =q € [d—2,d)N(0,d), ug clearly coincides with p,s. The push-forward
‘ug of y1, by the map T is given by

\E\_l F(l + %)
JE = T(1+4)T(1+ 5%
(H4-1(3By) det D) ' |D~2RTx| 1141 (x) L 3E ifg=d—2.

(1— D 'RTxP)2 LA(x)LE  ifg>d—2,

=™

Before moving to the proof of our main result, it might be worth pointing out
that asking W; to be continous on R? \ {0} is not restrictive, and can be obtained,
for example, by asking enough regularity of the anisotropic profile ®.

Proposition 7.3.2. Letd > 2,5 € (0,d), and let W be as in (7.1) with & € W*?(S89-1)
an even, and strictly positive function. Then, if x > d —s —1/2, ® is continuous on
891 and W is continuous on R? \ {0}.

Proof. Note that by the embedding proved in Theorem 6.3.3, ® is continuous on
89=1. To compute the Fourier’s transform of W, it is convenient to write the profile
® ¢ L*(S%1) in terms of spherical harmonics. Let

{(Yi:neN,i=1,...,N(nd)} c *&"1)
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be an orthonormal basis of L2(S%~1) whose elements are spherical harmonics.
Here, N(n,d) is defined as in Lemma 6.3.2. Recall that Y} is the restriction to $9~!
of an harmonic homogenous polynomial of degree n, that, with a small abuse of
notation, we still denote by Y/.. We can write

o=) ALYl AL eR
n=0 i=1
Then for x € R?
o N(nd) )Li ) X o N(nd) )\i .
Ws(x) =) Y= ) =) Z o Yn (%)
= = I« x|} = |x|

By Lemma 6.2.8 we infer that for ¢ € R4

N\&.

o N(nd) r<n+d 5) ¢
n d— ST i 5
) = s 5y B et (),

provided the series at the right-hand side converges in L2(S?~1). We show that
N(nd) r2 (ntd=s n+d 5)

B o) <

that gives the convergence in L2(S%~1). By the asymptotic behaviour of the Gamma
function (iv) in Section 6.1, we have

I~2(n+§—s) d—2s
—o 2 ) s (7.15)
(1)

Since & > d — s — 1/2, by the definition of W”"Z(Sd’l) we have the desired conver-
gence. Let

I\J\&

oo N(nd F(n+d Sy (€
_ z _ n d— S i 2/gqd—1
v B R ez () e

To conclude we show that ¥ € WA2(S?~1), for some B > (d —1)/2. The con-
tinuity of Ws then follows from Theorem 6.3.3. By definition of WA?(S9~1) (see
Section 6.3), we need to prove that

o N(nd p Z(n—l-zzi—S)
nn+d—2)) ——5—-= <00
L E F2(555)
By (7.15) we have
_o))B 2(=) d-25+2p
(n(n+d—2)) ~n .

2(%32)

Since « > d — s —1/2, we conclude. O
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We move to the proof of the Fourier’s transform of y,; and y,’;. Note that

g and yg: are Radon measures with compact support, hence they are tempered
distributions.

Lemma 7.3.3. Let g > d — 2, and let y,; € P(]Rd ) be defined as in (7.14). Then

Fa(@) = &g —7 T4 (12D,

7
Ié‘ 2
where . q

Cqi=22T (1+§) .
Moreover, if E is an ellipsoid of the form E = RDBy with R € SO(d) and D a positive-

definite d x d diagonal matrix, then
g (&) = Ay (DRT). (7.16)

Proof. We start with the case g > d — 2. Applying Formula 6.2.5 for the Fourier’s
transform of a radial function we get

~ _ (27‘[)%
Vq(é) - Cq,d |C|%_l 0

To compute the integral in (7.17) we use Formula 6.1.3 withv = d/2—-1,p =
(g —d)/2,and b = |¢|. We obtain

[a-m5,_ et ar 717)

2

g =24 (14 3) o1y (2D,

~ 4.9 qg—d
1ig(¢) —cqrdn222r(1+) 7Jq 7/

2 /gl gz
which proves the first claim in the statement. Here, we have used the explicit
expression of ¢, 4 given in Lemma 7.3.1. For a similar computation see also [Gra08,
Appendix B.5], where a slightly different definition of the Fourier’s transform is
used.

When g = d — 2, we use (6.15) to get
~ d_ d 1
firal@) =27 (5) a0,

Finally, (7.16) follows from the linearity and invertibility of the map TF. O

The key ingredient for the proof of our main result, Theorem 7.1.1, is a formula
for the expression of the potential function Wi * y{’; inside E when s € (0,d) and
g € [d—2,+00). As a first step, in the next technical lemma we study the regularity
of Wi * yg.

Lemma 7.3.4. Suppose s € (0,d) and q € [d —2,+00). Let W; be as in (7.1) with
@ : $971 — R a continuous, even, and strictly positive function. Let E := RDBy be an
ellipsoid, and let y,'; be the push-forward of the measure yiy by the map TE. Then

W * ul € L, (R?) N CO(R \ 9E).

Moreover, if 0 < s < min(d, (q +d)/2), then Wy » uf € CO(R?).
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Proof. We only sketch the proof in the case E := By and @ = 1, and for convenience
we ignore the normalization constant ¢, 4. It is immediate to show that, for any
0<s<dandg>d—2, wehave

W % g € Li (RT) N CO(R? \ 9By).

The continuity in R? \ @B, also holds for ¢ = d — 2. We focus on the behaviour
of the potential across 0B;. To this aim we consider, with no loss of generality,
(Ws % pg)(teq) for t close to 1. We use the compact notation

vs(t,1) ifg=d-2,

(Ws * Vq)(tel) = (7.18)

1 2\ 974 .
/ vs(t,r)(1—r") 7 dr  ifqg>d-—2,
Jo

where

[ Y
ost) = [y 1 W),

fort,r > 0 and t # r. By setting y := rw and using spherical coordinates on 9B
we have

42
B i [T sin® "% (o)
os(tr) = Cld)r /0 (12 + 12 — 2rt cos(¢))s/2 a9

e st
s 0 (1+a2—2acos(¢))s/2

de,
where h := max(t,r), « = min(t,r)/h € (0,1), and C(d) > 0 is a dimensional
constant. The integral above can be computed explicitly using Formula 6.1.2 with

=1 s
]’l_ 2 4 U_zr a_“/

and gives

vs(t,7) =

C(d)rd—lB(d—l 1)2 1(s s—d+2 d 2) (7.19)

e 2 2)¥N\y T
We now treat the cases 0 < s <d —1landd — 1 < s < d separately.

Let0 < s < d — 1. As recalled in Section 6.1, »F; is continuous with respect to
the last variable in the interval [0, 1] whenever

namely for 0 < s < d — 1. Hence, by (7.19), vs is continuous in t. For g = d — 2,
this immediately provides the continuity of the potential in the whole RY. For
g > d — 2 the continuity follows by (7.18), (7.19), and the Dominated Convergence
Theorem. Note that for0 <s <d —1and g > d — 2, we have

min(d,q—;d) >d—1>s.
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Letnow d — 1 < s < d. In this range of Riesz exponents, by (6.3),

S S*d‘i’z'd' 2 2\d—s—1
21—"1(2, 5 ,z,zx) (1 - a?) fora ~1. (7.20)
If g = d — 2, the asymptotics in (7.20), with (7.18)~7.19) and the fact thatd —s —1 >
—1, implies that W * 4 is integrable in a neighbourhood of 9By, hence it is locally

integrable in RY. The same asymptotics shows that the potential blows up on 9By,
thus it is not continuous on R%. Note that ford — 1 < s < d and g =d—2,wehave

min(d,q;d) =d—-1<s.

Letnow g > d —2. Let 0 < ¢ < 1/4, and assume that |t — 1| < e. In what
follows we consider the integral

1 g—d
/ vs(t, 1) (1 — rZ)T dr, (7.21)
1-2¢

which is crucial in proving the continuity of the potential. Since |t — 1| < ¢,
1—2e<r<1,and t # r, we have

1-—2¢ <

1.
1+e¢ Sas

Hence, for € small enough, we can replace, up to constants, the hypergeometric
function in (7.19) with its asymptotics given by (7.20). Namely, we can estimate
(7.21) as follows:

1 4 1 d-1 4
/ z)s(if,r)(l—rz)qT dr ~ ! (1_062){17571(1_?2)% dr=: 1
1-2¢ 1-2¢ h®

We distinguish two cases, depending on whether ¢ is smaller or greater than 1.
Lett < 1. We split I into I = I; + I, where

ot -1 »
L = /1_28 rhs (1—a2)d=s71(1 - rz)qT dr

t -1 L g—d
R R

1 ,d-1 d
I ::/t rhs (1—a?)?s71(1 - 1’2)[1T dr

1 —d
— [ stld2 _ 2yd-s-10q 250 4
[ -1

To estimate I, it is convenient to further split I, = I3 + 14, where

1+t

I == /T rs+l—d(1,2 _ tZ)d—s—l(l _ 1,2)# dr,
t

1 _ e 0-d
I = /ﬂ rstl d(rz—tz)d sTl(1—#2) 7 dr.

2
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For g < d we have

— T =10
L] < 204 (141" (1 1“) / s
t

146\ /141 d=s 1\ 7 g+d
< 1—7 7—t g _— = 1— 2 —s
_C1< 2 > ( 2 ) C1< 5 ) C(1—-1t) ,

where C1,C; > 0, and we used thatt < r < (1+¢)/2ands+1—d > 0. An
analogous reasoning leads to the same estimate for g > d. Similarly, sinceq > d — 2,

q—d+2

1 g—d d
L] < C3(1—t)?=1 /M (1—r) 2 dr=C3(1—t)4—1 (1 _ 12"H)

2

4
—Cy(1-1)"
where C3,C4 > 0, and we used thatr — t > (1 —t)/2. As for the term I3, setting

T:=t—r, we obtain

=142 (p o)Al o -d
11:/0 STt (1 (- ) T de

Bl42e g—d t—1+42¢
§C5/ 45" (1—t+T)TdT§C6/ f(t,7)dr,

0 0

where Cs, Cg > 0, and
d—s—1 e q—d
T if 5= >0,
t,T) = d 2 =
St {rqﬁsl if —1< 24 <0.
Hence, we deduce the estimate
(t—1+2e)4* if .2 >0,
d

(t—1420)7 =  if —1< L% <0

|| < C7{

for some C; > 0. In both cases, if 0 < s < min(d, (§ +d)/2), we can find a positive
B such that
|| < Cr(t—1+2¢)P < Cr(2¢)P.

For t > 1, instead, we write

1 -l g—d
_ 2 2\d—s—1 2\ 5=
L/lir%sfz(t ~ 2y sl - 2R gy

and, assuming (g +d)/2 —s > 0, we obtain

g+d _

1
<G [ (-n"
1-—2¢

where Cg > 0. We conclude that, if d — 1 < s < min(d, (9 +d)/2), withg > d — 2,
there exist positive constants ey < 1/4, Cg, and f such that for any 0 < & < g and
any |1 — t| < ¢, we have

gad

=gy = Cg(2e) 7 %,

1 _
0§/ vs(t,r)(l—rz)qudrgCg <|1—t]qzds+sﬁ>.
1-2¢
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Using this estimate it is easy to show that, under these assumptions, the potential
is continuous also on dB;.

The case s = d — 1 follows analogously, by using (6.2) instead of (6.3) in the
estimate of o F; for o ~ 1. O

Remark 7.3.5. From Lemma 7.3.4, we infer that W * yg € CO(R?) in particular
wheng=s¢€ [d—2,d)N(0,d), and when q = s+ 2, withs € [d —4,d) N (0,d).
Such a continuity result will be relevant to extend up to the boundary of E the
formulas (7.24) and (7.25) of the following Theorem 7.3.6.

We are now in a position to prove the Fourier representation of the potential
Ws * y,’f inside E.

Theorem 7.3.6. Let s € (0,d) and q € [d —2,+c0). Let W be as in (7.1) with
@ : 8971 — R a continuous, even, and strictly positive function. Suppose that W is
continuous on R? \ {0}. Let E := RDBy be an ellipsoid, and let y,’; be the push-forward

of the measure yig by the map TE. Then,

Ey(oy _ = ¥(w) s—q s 1 » d—1
(WS *:uq)(x) - Cd,S,q /Sdfl |DRT(JJ‘S 2F1( 2 7 2! 2/“ (x/a))> dH (CU) (722)

for every x in the interior of E, where ¥ := Wi |ga—1,

2-41r(1 + T(3)
il (1+ 15°)

Caoq = ) (7.23)

and
a(x,w) = W
" IDRTw|
In particular, for q = s the potential function Ws x uE is constant in E and is given by

s—d—2

2 ¥
(W i) (x) = =— SFZ<%) /Sdlm(T“’a)}Pde—l(w) (7.24)

for every x € E. Finally, for s € [d —4,d) N (0,d) and q = s + 2, the potential function
W s uE , is, up to an additive constant, a quadratic function in E given by

¥(w)
a1 |DRTwls

_ Y(w) _
—SCd,s,542 /517,71 DR w72 (x-w)?dH ™ (w)

(Ws * 1i0) (X) = Casp /5 A (w)

(7.25)

for every x € E.

Remark 7.3.7. Theorem 7.3.6 provides an alternative way to derive [Fra+25, Equa-
tion (2.31)] and in fact extends it to the entire range of s € (max{d —4,0},d) in
any space dimension d.
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Proof of Theorem 7.3.6. Formula (7.22) is a consequence of the Fourier Inversion
Theorem. However, we cannot apply the inversion formula directly to W; * ‘ug,
since its Fourier’s transform fails to be integrable at infinity for 2s — g > 1. Indeed,
by Lemmas 6.2.6, 6.2.7 and 7.3.3, and due to the asymptotic behaviour (6.8) of the
tail of the Bessel function at infinity, we have that

War b = O(2F 4 478), g =
We thus proceed by approximation. For r > 0 let B, be the ball of radius r centred
at the origin and let yp, denote its characteristic function. We set x, := |B,| 1 x3,
and define P, := x, * (Ws * pf).

By Lemma 7.3.4, P, belongs to L. _(R?) and P, converges pointwise in R? \ 9E
(thus almost everywhere in IRd) to Ws % ‘ug ,asr — Ot If

0 < s < min (d,#),
the function P, is continuous on le, and P, converges pointwise in R4 to Wy * yg: ,
asr — 0.

Note that, by the controlled growth behaviour at infinity, s is a tempered
distribution. In particular, since y; has compact support, W * ,’I/lg is still a tempered
distribution (see Section 6.2 for details). Lastly, since ), has compact support, P, is
a tempered distribution and P, = X, W, ﬁg To compute X we apply Formula 6.2.5
and obtain

xr(§) = ——=— | p2]s_(pl¢]) dp
|mm1/ !

_2ir(+4) 1

d
rz ¢

%]% (1’|C|), (7.26)

where we used that |B,| = rirs /T(1+9).
By the homogeneity of V/\Z given by Lemmas 6.2.6, 6.2.7 and 7.3.3, and the
asymptotic behaviour of Bessel functions in (6.7)-(6.8), we deduce that

P (§) = 0(|gF), ¢l =07,
—4-3a-
P(g) =o(gP 22", 6] = oo.
Since 2s — g < d 4 2 in our setting, this implies that P, € L!(R¢). Thus, we can

apply the Fourier Inversion Theorem 6.2.1 (see also Remark 6.2.2). By Lemma 7.3.3,
(7.16), and (7.26) we obtain

qd 1

Py(x) = S —
T 48 e jgdds prg

T g
J4(1EDIg(IDRTEDY (127 ) costx-£) e, 7.27)

2" d

Fom 2 1 4
Ga=—7T(143)r(1+3).

In (7.27) the imaginary part can be dropped because x; W ﬁ,’; is even. Writing
(7.27)in polar coordinates yields that P,(x) is equal to

4 g—1_d_
qz /Sd IMT‘UP/ P : 2 1]%(7’p) %(P‘DRT(UDCOS pw - x)dpd’Hd 1( )
r



166 CHAPTER 7. NONLOCAL ANISOTROPIC ENERGIES

Set
— T — r __xw
t:= |DR CU|p, ‘B(T’,CU) = m, and a(x,(JJ) = m (728)
Changing variables in the integral with respect to p we obtain
¢ Y
p(x) = 24 / %Ir(x,w) AH " (w), (7.29)
r2 JS"1 |IDRTw|*~2

where
[ee]

I(x,w) ::/0 tS*%*gflj%(t,B(r,w))]%(t) cos(ta(x,w))dt.

To compute I, we recall identity (6.9), that gives

cos(ta(x,w)) = cos(ta(x,w)|) = \/jt%uc(x,w)ﬁ]%(trx(x,wﬂ),

where the last expression on the right-hand side is extended at ta(x,w) = 0 by
continuity given the asymptotic (6.7). Thus, we can rewrite I, as

2 (7.30)

For the integral in (7.30) we use Formula 6.1.4. For a fixed x in the interior of E,
r > 0and w € S9! we apply the Formula 6.1.4 with

’ - 2/ ,M—zl

o= g, a=|a(x,w)|, b=p(rw), c=1
Hence, conditions (6.10) translates into
s>0, 2s—g<d+4, and |a(x,w)| <1-—B(r,w).

The first two conditions are trivially satisfied for s and ¢ in the range under
consideration. As for the last one, we observe that x = pRDy for some 57 € S%~1
and 0 < p < 1, and thus

|x - w| plir- DR w|
W) = e = P <p<l

for every w € S%~1. Since B(r,w) — 0asr — 0T, uniformly with respect to
w € 81 there existé € (0,1) and ¢ > 0 such that for r < rg we have

la(x,w)| +B(r,w) <6 Vwes
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For x in the interior of E, 7 < ry and w € S9! we can then evaluate the integral in
(7.30), and deduce that

where we have used property (iii) of the Gamma function in Section 6.1. By (7.29)
and the definition of B in (7.28) we conclude that, for x in the interior of E and
r < ro, Py(x) is given by

~ ¥ (w) s—q s d L o 2 -1
€5 /Sd—l |DRTw|5F4( R +1, E"B (r,w),a (x,w)) dH" " (w), (7.31)

where ¢4 5 4 is the constant in (7.23).
We now pass to the limit as 7 — 0. By (6.6) and by the definition of § we have
s—q s d

tim Fy (“5 575

1 a2 2 _ 5—4q 5, 1. 2
+1, E"B (r,w), (x,w)) =,F (T, 35 (x,w)). (7.32)
Moreover, since F; is analytic in its domain of definition and
la(x,w)| 4+ B(r,w) <6 <1 forr <r,

the convergence (7.32) is uniform with respect to w € $9~1. Hence, passing to the
limit in (7.31) and recalling that P, converges to W x* ],tg pointwise in the interior
of E,as r — 07, we obtain (7.22) for every x in the interior of E.

The statement (7.24) for g = s follows immediately in the interior of E from
(7.22), owing to (6.4) and property (i) of the Gamma function in Section 6.1. Simil-
arly, the statement (7.25) for g = s + 2 follows immediately in the interior of E from
(7.22), owing to (6.5). In fact both formulas hold up to the boundary of E since in
both cases the potential W; * y,? is continuous, as observed in Remark 7.3.5. O

We conclude this section by proving Theorem 7.1.1.

Proof of Theorem 7.1.1. By Theorem 7.2.1 the minimizer of IF exists, is unique, and is
the unique measure satisfying the Euler-Lagrange conditions (EL1)«(EL3). There-
fore, to conclude it is enough to show that u! satisfies (EL1)~(EL3). Condition
(EL1)is trivially satisfied. Conditions (EL2)}-(EL3) follow from Theorem 7.3.6 with
q=s. O

7.4 The sub-Coulombic regime

We recall that in Section Section 7.3 we have shown that, for s > d — 2, the
minimizer uf of IF is insensitive to the anisotropy ®, and in particular if E := By

By
we have 5! = Hiso s-
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In this section we show that the equality above may fail for s < d — 2 by
providing an explicit example of a kernel W of the form (7.1) with continuous and

non-negative Fourier’s transform, for which piq 47 is not the minimizer of ;.

Lemma 7.4.1. Letd > 3ands € (0,d —2). Let W; be as in (7.1) with ® : 8%~ 1 — R
given by

d
O(w) =Y aw? forwesil
i=1
witha; > 0fori=1,...,d. Then W is non-negative on 81 if and only if
1
< — i i=1,...,d. .
al_d—s—ljg;“] foreveryi=1,...,d (7.33)

Proof. Let pgand p,,, fori =1,...,d, be the homogeneous harmonic polynomials
defined as

po=1, poi(x):=(d— 1)35,2 - sz,
j#i

for x € R%. Then for w € 891 we write ® as

1 d
aipo(w) + P Y aipai(w),
i=1

I
—

N4 1 ¢ T& e s T4+ 52 pyi(E)
a; w;2% 52 2 &
Ty me BN T a s T T ) e
S

g aD(5°) 1 ¢ d—s (¢
=2 2 i—0i——p2il ) )
= T |¢|d—s§<“ R P2'<|c|>)
(7.34)

where we have used property (i) of the Gamma function in Section 6.1. In particular,
for w € 91 we have
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Thus, (7.34) can be rewritten as

—~ 1 d 4T L 1 d gz
Ws(é):WZ* o SZ<1_d+S)“i+Z“]'>|€Z|2'

§
(3) s 5 j#i

Since1 —d +s < 0 for s < d — 2, we conclude that V/\Z > 0if and only if (7.33)is
satisfied. 0O

We are now in a position to prove the main result of this section.

Theorem 7.4.2. Letd > 3ands € (0,d — 2). Let Wy beas in (7.1)with ® : $9~1 — R
given by

d—1
d—s—1

S 2

d
P(x) = X2+ lez =1+ Fp—— for x € 8971,
i=2

Then @ is continuous, even, and strictly positive, and Wi is continuous and non-negative

on 8=, However, the measure i, 4o is not the minimizer of the energy 121 with
kernel W.

Proof. All the properties of ® and W are straightforward, except for the sign of
W. By Lemma 7.4.1 the non-negativity of Ws on 871 is equivalent to

1 d—1
<—— (d—24-"—). :
1_d—s—1<d 2+d_s_1> (7.35)

A simple computation shows that (7.35) reduces to s> — sd < 0, which is true for
0<s<d—-2
To prove that the measure pjgo 47 is not the minimizer of If !, it is enough to
show that
A= (Ws * piso,d—2) (€2) — (Ws * Hiso,4—2) (1) # 0. (7.36)

Indeed, since Wi * piso,g_2 € C°(IR?) by Lemma 7.3.4, equation (7.36) implies that
W * Higo d—2 is not constant H%1-a.e.on 9By, contradicting (EL2).
We note that

_ 1 s (I—w) d-1
(Ws * pisod—2) (e1) —Cd72,d/sd_1 ey — [f <1+ =5 —1]e = w|2> dH"(w)

and by the change of variables @ := (wy, w1, w3, . ..,w,;) we can rewrite

1 s w? _
(Ws * piso,4—2) (€2) = Cd—z,d/ (1 + 1 ) dH (w)

i1 |ep — wls d—s—1|e; — wl|?

1 S @2
=cy 1 2 dH N (@).
Cd z'd/sd—l Iel—d)|5< +d—s—1|el—cv|2> @)

Therefore,

s ws — (1 —wy)?

— d—1
A—Cd_z,dd_s_l st |e — w12 dH" (w).
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Since |e; — w|? =2 — 2w for w € $9~1, we have
e — w2 =2 (1—w)T  forwe § L.

Hence, the claim (7.36) reduces to showing that

2 _ 2
/S » “m A1 (w) £ 0. (7.37)
—wy) 2

We consider separately the two cases d > 4 and d = 3. We start with the case
d > 4. Passing to spherical coordinates, the integral in (7.37) can be rewritten as
C(d)(I; — I), where C(d) > 0 is a dimensional constant, and

T sin? 0 sin—3
o [ st e,

(1 —cos(¢p1)) 2
2 =/0 /0 (1—cos(qo1))2T sin=2(¢1) sin? 3 (@2) dg1d¢,.

To conclude we need to show that I; — I, # 0. We write I; = I3, where
T d —2—s
I3 = /0 sin®(@1)(1 —cos(¢@1)) "2 de,
7T
I = /0 cos ((p2) sin (goz) de,.

By the sine and the cosine duplication formula and by Formula 6.1.1 we obtain

13:2‘1_#/0 sin? =2~ 5<g021)cos ((Pl) deq

— pd+1-52 /07 sin =275 (1) cos? (1) dgn (7.38)
_1_s d—s—1d+1
_ nd—1
=2 ZB( 2 2 )
whereas
d—2 3
4—2/ cos? (pz)sm (goz)dgoz—B< 7 2). (7.39)
Similarly, we write I, = I5ls, where
§ 25 L 42
L= [ (1= cos(gn) ™ sin 2(g1)dex
7 d—s+1 d-1 (749
_od=5 [ % qind—  oAd—1-% — —
=2 2/0 sin? = (1) cos? 2 (1) dpy =2 23(72 A )
and
T i [2 -
Ig = / sin? ((pz)d<p2—2 / sin (goz)cos ((pz)d(pz
Jo Jo (7.41)

=28(50 )
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Combining (7.38)~(7.41) yields
qes(d—s—1 d+1 d-23
-, = — —pd-l-sp(2 2~ X"~ =2
L—-D LIy —Islg =2 2B < 5 " ) B < 5 2)
_4_s (d—s+1 d—1 d—2 d-2
_ H2d—4
2B (= ) B ()
By the definition of Beta function, the previous equality can be rewritten as

s T =1 (d—s—1\ /3 LI rd -1
2 Zr(é—g) (r( > )r(5) 2 Fd-2) )

2

By properties (i) and (iii) of the Gamma function we have that
d—s+1 d—s—1 d—s—1
r( 2 ) - ( 2 ) r( 2 )

"3)-7G) =%
Therefore, I} — I, = 0 if and only if

and

gr(d—z)—2d—4(d—s—1)r(”’12;1)r(g—1) —0. (7.42)

Finally, properties (ii) of the Gamma function gives
d—1 d  3d
F(T)F<§ - 1) =234\ /7T(d - 2),
hence (7.42) reduces to
v
2
which is never satisfied for s < d — 2. This concludes the proof for d > 4. When
d = 3, the previous computations can be repeated with the only difference being
that the integration interval for ¢, is (0,27), instead of (0, 7r). This change simply

introduces an extra factor of 2 in the expressions for both 14 and I, so the same
calculations still lead to the desired conclusion. O

I(d—2)(2—d+s)=0,

A simple continuity argument leads to the following.

Corollary 7.4.3. Letd > 3and s € (0,d — 2). For any € > 0, we set

d—1-e o & 5 -1
mwl+gwi forwe$§

1 X
Ws,g(x) = W@g (lx’) .

Then there exists g > 0, depending on s, such that for any 0 < & < g the profile O, is
continuous, even, and strictly positive, W ¢ is continuous anEZ strictly positive on gi-1

D, (w) =

and for x € RY, x #£0,

but the measure piso 4o is not the minimizer of the energy 1PV with kernel W replaced

by W






Optimal constructions
of grain boundaries

8.1 Assumptions and main results

In this chapter we consider the two-dimensional semi-discrete dislocation energy
introduced by Lauteri and Luckhaus in [LL16] (and later studied in [FGS25])
and propose an alternative, simpler, and more natural construction for the grain
boundary between two crystal grains with small orientation difference, which
works for a general Bravais’ lattice.

Let L > 0, and let ) := [—L, L] x [—2L, 0] represent the two-dimensional cross-
section of a three-dimensional crystal. Let € > 0 be a small parameter representing
the microscopic scale (e.g. the size of the lattice cell), and let 7, A > 0 be two para-
meters representing the (rescaled) length of the Burgers’ vector and the (rescaled)
size of the core-region around a dislocation, respectively. Consider 5 a Bravais’
lattice in R?, and by, by € R? a basis of the lattice, so that B = spanzz{Bl, by}, and
spang2{b1, by} = R2. Let ¢ € [0,27] denote the lattice orientation, so that the
rotated lattice is 5 := Ry3, where Ry, € SO(2) is the rotation

Ry = <cos¢ — sin<p> '

sing cos¢

Clearly B is the lattice generated by b = R¢I~71 and by := R¢Ez, which we write

for simplicity as
. (cosy __ [cost
b= <sin17) ;b= (sin()) ’

We assume that siny # 0, that is by # e1. For b; = e1 one can construct the grain
boundary in a simpler way (see Remark 8.3.2). Finally, we denote with « > 0
the small misorientation between two neighbouring grains occupying the regions
[—L,0] x [-2L,0] and [0, L] x [—2L,0].

173
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We define the class of admissible strains C¢(Q)) as follows:
Ce(Q) = {(B,5) : p € L'(UR2) N1 (Q\ B (5); R2),
S relatively closed, satisfying (Hl)—(HB)},
where

(H1) supp(curl g) C S,

(H2) (T (B),1) € teB for every simple, closed, and Lipschitz curve 7 in Q \

Ba¢(S), where T, is the tangent trace on v,

(H3) p satisfies the symmetric boundary conditions

_ [R.y in[-L,—L+¢] x [-2L,0],
p= Ry in [L —¢,L] x [-2L,0],

with0 < ¢ < L.

Here,
Bie(S) = {x € R? : dist(x, S) < Ae}.

Condition (H2) deserves some clarification. In particular, we should illustrate
why T, is well-defined. Since 7 C Q\ B¢(S), we have that dist(y, B¢(S)) > 0.
Then, one can show that there exists an open set A C Q) \ B¢(S) such that 0A =

¥ U ¥, with ¥ being a smooth curve disjoint from 7. By (H1), curl(f) = 0in A, thus

:B € L%url(A; ]R2><2)'

It follows that f admits a tangent trace in A (see Section 6.5). Since dA is made
of two disjoint connected component, one of them being 7y, we can identify the
tangent trace of f on A with the sum of two elements, one of them being the
tangent trace on 7y (see Section 6.5). One can also show that the trace on y obtained
as above is independent of the choice of the set A, thus, T () is well-defined.

Condition (H2) is a quantization property of the averaged macroscopic Burgers’
vector. Indeed, if in addition B € C%(Q;R?), (H2) can be rewritten as

/ Bt dH' € teB,
v
and, if curl(8) € L?(Q;R?), then by Stokes’ Theorem (see Section 6.5)

/F curl(B) dx = /7 BraH! € teB,

where I' is the set enclosed by y and the left-hand side is the averaged macroscopic
Burgers’ vector.
The energy associated to an admissible pair (5, S) € C:(Q) is

1
E¢(B,S) = — (/Q\BM(S) W(B)dx + L‘Z(B;\E(S))> , (8.1)

€
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with the first term being the elastic energy and the second term a core energy. We
assume the elastic energy to have at most quadratic growth, namely there is a
constant C > 0 such that

W(M) < Cdist*(M,SO(2)) VM in a neighbourhood of SO(2). (8.2)

The energy is written in terms of the strain field 8. However, outside S, B is locally
the gradient of a deformation.
One of the goals in [LL16] was to show that, for € small enough,

inf{E.(B,S) : (B,S) € Ce(Q)} < Callogal,

with C > 0, as claimed by Read and Shockley in [RS50].

This has been done in [LL16] for B = B = Z2 (that is ¢ = 0), and later, in
[FGS25], generalized to the rotated lattice RyZ?. Note that the case ¢ # 0 is
equivalent to having an unrotated lattice Z2, and asymmetric boundary conditions
Rq—¢, as considered in [RS50].

In this chapter we deal with the case of asymmetric grain boundaries for a
general Bravais’ lattice B, and propose an alternative, simpler construction for
the grain boundary. In our construction the deformation is piecewise affine on a
finite polyhedral Cacciopoli’s partition, hence the strain § is piecewise constant,
and the boundaries of the regions of the partition are straight segments. Thus, our
construction is admissible for the more restrictive minimization problem

inf{E¢(B,S) : (B,S) € Ce(Q)), B piecewise constant}, (8.3)

which can be recast purely in terms of matrices. Within this more restrictive
framework, a competitor for (8.3) is a piecewise constant map  which connects
the rotations R+, on the two outer vertical strips of the domain, in such a way that
the constant values of  are close to SO(2) and that the constant matrices in the
construction are almost always rank-one connected along their common, straight
interface. Recall that two matrices M; and M, are said to be rank-one connected
along a direction v if M1 — My = w ® v for some vector w.

We now briefly describe our construction. As in [LL16] and [FGS25], the field
agrees with the respective boundary conditions R+, in the majority of the domain,
except for a thin vertical strip of width of order e/a. In the general case 6 # 0
this strip is composed of two vertical sub-strips next to each other, and only one
Burgers vector is active per sub-strip. In each sub-strip, dislocations are arranged
periodically, at a distance of order « /. The presence of a dislocation is incorporated
by means of a jump of the deformation, that simulates the opening of the lattice to
make space for the presence of the extra half plane of atoms carried by the defect.
We take into account the accumulation of the Burgers” vector by making such
opening wider and wider as we travel down in the lattice.

8.2 The grain boundary construction

In this section we present our construction, illustrated in Figure 8.1.
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2|m

Figure 8.1: The vertical grain boundary.

8.2.1 The splitting of the domain

Let ¢1,¢; > 0 be positive parameters to be defined later on, representing the width
of the two vertical sub-strips X and X, defined as

Yy = [-201,0] x [-2L,0], X;:=[0,20p] x [-2L,0],
and let
Y = [-L,—201] x [-2L,0], X, :=[-24, L] x [-2L,0]

be the strips where the boundary conditions R+, will be imposed. Then we split
the domain as
O=%X_,UXUXUZL,.

The vertical sub-strips Z; are further split into squares with side-length 2¢;. More
precisely, we denote the generic square in the strip %; as

QF=Qi+t5, Qi=[-4,0), k=012,...,N,
where '
ti-{ = —2k+1)lie; + (—1)"4ieq (8.4)
is a translation vector, and N; := [L//;] — 1. Finally, we denote with DY :=

[—70,4, 70,,]%, and with D the family of dyadic annuli

Din = [_rn,i/ rn,i]z\ [_rnfl,i/ rnfl,i]z/ Tni= 2n70,i/
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forn=1,...,7;, withi;,i = 1,2, such that
Tagi = i

While [;, and #; are parameters to be fixed, r; is determined once they are chosen.
By construction, we have

i

Qi = [_rﬁi,il rﬁi,i]z - U D:l, i= 1,2
n=0

For later convenience, we define the following subsets of D}":

>
]
=
0
o
=]
<
—
~
=
|
=
—_
<
<
=
|
=
—_
S—
N
—
=
8
—
<
<
8
—
SN—
N
—~
=
=
|
~
—_
<
<
=
|
=
—_
S—
—~
SN—
N

where conv denotes the convex hull. Finally, we partition Q; and Q> in a slightly
different way, namely

Qi =DYUQIUTIUT! U (UIL,AY™) U (UL A0,
Q2 =DJUQLUTE UTS U (UM, AY") U (UM, AS™),

where
Qll = [_rﬁlrl’o] X [_rﬁl,llrﬁl,l] \D?’
Q5 = 1[0,y 2] X [~T0p 2,77 2] \ D,
and
T{Z _ COHV({(O/ ;/0’2)1 (7’0,2, }"0[2), (rﬁZIZI 7’«;12,2)/ (0/ rflz,Z)})/
le = conv({(0, =702), (ro2, —702), (ray2, —1p2), (0, =7, 2) }),
T3 = conv({(0,701), (=701, 701), (a1, Ty 1), (0,77,1) 1),
T4 := conv({(0, —r0,1), (=101, —70,1), (=11, = 1), (0, =7, 1) }).

These are the regions where the strain will be constant, forming a finite Caccioppoli
partition of Q; into polygonal domains (see Figure 8.2). All the translated squares
QF are partitioned in the same way. We indicate with a further subscript k the
translations of these sets by the vector t;‘ in (8.4), which are subsets of Qé‘ .

8.2.2 The construction of the piecewise constant strain

For p; € R? and v; € R? fori = 1,2,3, we define the affine interpolation I, with
values v; at the points p; as follows: for every x € A := conv({p1, p2, p3}),

Ip(x) == Zvicbi(x), (8.5)
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21’ﬁ2

N
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1 / Té;

/A‘l”” / AL Agml \ A"

Figure 8.2: The regions of the construction.

where

P=(p2—p1 ps—p1), ®i(x):=Pf (P (x—p)),
OFf(x)i=1—x1 —x5, OFf(x) =2y, OFf(x):=1x,.

The constant gradient of the affine interpolation is given by

Via(x)

3
v; @ VO;(x)
=1

1

1\ " N\’ 0"
a(rr(0)) e (rr (o) (e () @9
_ 1 —DPp + Py Py —Py
" detP (Ul ® ( Py, — Ppq T —Ppp T8 P11 ’

where P~T denotes the matrix (P’l)T. Clearly, if v; = w; + tfori =1,2,3, with a
common translation vector t € IR?, then one can use w; instead of v; in (8.6).

We now define affine functions in all the components of Qf as follows. Let
R; == Ry, with a; := (—1)'a. In the top half of each square Q¥ we impose a
translation along b; of k units, in order to accommodate all the dislocations with
Burgers’ vector b; up until that point. In the bottom half instead we increment
the translation of the top by one unit, to describe an additional dislocation. The
regions will also undergo a rotation R; to match the boundary conditions. More
precisely we have the following.
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Regions Ql1 rand Q5. We define deformations in these regions as the boundary
conditions on the neighbouring >4,, that is

- 1
IQ,Lk(x) =R_ax, x€Qqy,
IQE,k(x) = RuX, x€ Q5

Clearly VI, = R_yand VIgy = Ry, so that the strain is either R, or R—,.
Ql,k 2,k

Regions T}, and Tl.b - We define deformations in these regions as the affine maps

IT,-‘fk(x) = Rix — (—1)'kb;, x€ Tiy
Ipp (%) = Rix — (=1 (k+1)b;, x €T

Clearly Vi = VIT?’k = R;. In particular the strains are independent of k, while
the deformations are k-dependent.

Region A’”. We define I, as the interpolation in (8.5), with points
gion A} A P P

. k
p1i=(ru11, —tao10) + 15, p2i= (rup,ma1) +85, p3 = (re11,1mo11) + 15,
and corresponding values

v1 == R_gpy1 + (k+ 1)7eby, vj = R_ypj +kteby, j =2,3.
The gradient of the interpolation is then

1 1
T, 2r,11 2ry_11
Vign =R_, | "1 ) " + Teb ® !
A
Lk —Tn-11 S —
2ry—11 2ry—11
1 _ "1 711
r Tul—Tn_ Ty_ 211 (ru1—"n-11)
+R—lx n,1 ® n,1 n—1,1 +R—a n 1/1) ® n n n
i 0 -1, 1
2ry—11
1 1
= thx + h— Tgbl ® 7
Tn,1 -1

where we have used thatr, 11 =r,1/2.

Region A?Z The interpolation I, is defined as in (8.5), with points
4 1k

pri= (rao1g,—ra10) 15, p2i= (ra,—ru1) +15, p3i= (r1, ) + 1,
and corresponding values

vj = R_yp; + (k+1)teby, j=1,2, v3:=R_yp3+kteby.
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The gradient of the interpolation is

1 _ Mmatte-11
¥, - — Ty r Zrn, "n1—Tn—1,
Vi, :Ra< n—11 ) ® Tul—Tn-11 _'_R“( w1 >® 1(rn1 11)
Lk —Tn-11 0 —Tn1 _ 1
2r,,[1
1 , 1
T zrn, T,
+R_, ( ”'1> ® N !
Tn1 1 1
! 2?’”,1 2?’”1
1 1
=R_,4— Teb1 ® .
2rp1 1
Region A7}, We define I Ay as the interpolation in (8.5), with points
o k
p1= (=Tn_12, —Tn-12) + 1,
p2 = (—Tnp tn2) +15,
. k
p3 = (—Tn-12,Tu-12) +t3,
and corresponding values
v1 == Rapy — (k+1)Teby, vj = Rypj — kteby, j =2,3.
The gradient of the interpolation is then
1 1
—71,, 27,_ ; 2r -1,2
Vijen = Ry ( " 1'2> ® ) —reby @ !
2,k 77’71—1,2 _ 1 _ 1
2ry_1,2 2ry_1,
1 n2+rn—12
—-r T Tup—Tn —Tp— 2rp12(tn2—"n-1,
R, < n,2> ® M2tz | R, < n 1,2) ® 12(rn2="u-12)
Tn,2 0 Tn—12 1
2ry_1

1 1
=Ry + —Tehr ® ,
"n,2 1

where we have used thatr,_1, = r,,2/2.

Region AY”. The interpolation I s, is defined as in (8.5), with points
g 2k p p

b,
Az

— (_ _ tk — (_ _ tk — (_ + tk
p1i=(—tn12,—tno12) + 1ty p2i=(—tn2, —tn2) +1y  p3i=(—Tn2,n2) +1t3
and corresponding values

vj = Rapj — (k+1)teby, j=1,2, v3:= Ryps — kteby.
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The gradient of the interpolation is

—Ty_ "m2—Tn-12 —r 22 (T2 —Tn-1,2
VIAb,n — Rlx ( n l,2> ® n n + Ra ( n,Z) ® n2I'n n
2,k —Ttn-1,2 0 —Tn2 __1
27’,,'2

1
—r T2 2 T2 2
+Ra<rn,2)® ln +Teby ® 1n
2
i 27’,7,2 27’7,,2

1 —1
Teb, ® .
21’,1,2 1

The definition of the piecewise constant strain. We define the strain : O —
R2%2 as

:va+

Id in (DY +5),k=0,...,N;, i=1,2,

VIA;/n in Ai’n, A {a,b}, i=12k=0,...,N,n=1,...,7;,
B = ik Ny . . ) (8.7)
Ry inX UUZ(Q5, VT3 UTH,),

R, inZ UUN QL UTHUTE,).

Remark 8.2.1. A difference between our construction and the ones in [LL16] and
[FGS25] is that the separation of the half squares introduced by the Burgers’ vector
is k-dependent. In other words, while in each square the additional horizontal
shift—compared with the one above—is of one Burgers’ vector, the total shift in the
k-square is the cumulative effect of all the shifts above it, since once a dislocation is
added in the square above, the square below will have to accommodate it as well.
This is particularly clear observing the illustration of the deformation in Figure 8.3.

8.3 Admissibility and energy of the grain boundary

8.3.1 Admissibility

In this section we check that the strain  is admissible, namely that it satisfies
assumptions (H1)-(H3), and identify the set S where the curl concentrate.

By an application of Lemma 6.5.1, it is easy to see that the only lines where the
curl of B may concentrate are ¥ N X, and aD? (with its translations). Indeed, one
can easily check that

VIA?,;((—l)iHel —|—€2) = Ri((—l)i+1€1 +62), i=1,2,
VIAbf((*l)iHel —e) =Ri((-1)""e; —ep), i=1,2,

showing that no curl concentrates along the interfaces between A/" and T, and

between A?’k" and Tf,, fori = 1,2,k = 0,...,N;and n = 1,...,7;. Moreover,
since | AL and [ AL (and, similarly, I Al and [ A’.",f“) have the same values on the
/ i, 1, L

common vertices, no curl concentrates on the interface between the corresponding
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Figure 8.3: The deformed rectangle with  :== —7t/3 and 6 := 7t/6.

regions. We recall that the curl energy penalizes the length of the interfaces between
constant values of the strain that are not rank-one connected along the direction of
the interface. While the length of 0D is small, and hence a curl concentration there
would be energetically affordable in principle, the length of X1 N %5 is of order one
and hence we need to ensure the values of B across it are rank-one connected. Here
is where we fix the length of the square Q;, namely 2ry;,.

By imposing that the constant values of  in AZ{Z and AS:ZZ are rank-one
connected along the common boundary we get the condition

1 1 1 1
R_,— Teh1 ® — | Ry — Teby ® ep =0,
21’7‘11 1 21’7‘12 -1

which simplifies to

1 1

— Teby + — Teby = 4sinae;. (8.8)

"7y Ty

By using the explicit forms of by and b, (8.8) fixes the free parameters r,. Indeed,

we have

B _ tesin(y —0) P Tesin(yy —0)
" 4 sinasing’ "7 4 sinasing’

Note that both 73, and rj, needs to be positive and less than L /2. While the second

condition is clearly satisfied for ¢ < 1, the first amounts to have

(8.9)

sin(7) tan~1(#) — cos(7) < 0,

(8.10)
cos(8) —sin(8) tan" (1) > 0.
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Without loss of generality, we can assume to have sin(7) > 0 and sin(f) < 0.
Indeed, if this is not the case we can swap y with 17 4 7 or 8 with 6 + 7T without
changing the Bravais’ lattice . Then, (8.10) reduce to

tan~1 () < tan"1(y),

that is satisfied up to swapping by and b,.

Under the additional condition (8.8) the strain  defined in (8.7) satisfies (H1),
with S := Ui/k(D? + ti-‘), and (H3). We now check condition (H2). To compute
the circulation of B on 9DV it is sufficient to take 7y as a closed curve surrounding
DY + t;‘ (see Section 6.5). With no loss of generality we can take a concentric square,
with side-length 2r,, ;. Since VI AT and VI Ab (for i = 1,2) are rank-one connected
on their common boundary, we can take either value in the computation of the
circulation of 8 on 7. One gets, fori =1,

/ Btds =2r, (VIA?,nez — R,aez) = —T7eby,
v

and fori =2,
[r Btds =2r,, (R,Xez - vIAlz;,nEZ) = —7T¢eby.

Hence, condition (H2) is satisfied, and the strain f is admissible.

Remark 8.3.1 (The square lattice). We note that the distance r;;, between disloca-
tions with Burgers vector b; in (8.9)is in complete agreement with the computations
of Read and Shockley. Indeed, in the special case of the square lattice, we have
| sin(7 — 0)| = 1; moreover, by fixing e.g. 7 € (0, 71/2), we have that § = 7 + 37,
hence the spacings of the dislocations are

e 1 Te 1

rfl] ~ s rflz ~
sSma« cosy

sina siny’
exactly as computed by Read and Shockley.

Remark 8.3.2 (The case of symmetric grain boundaries). Suppose that 7 = 0,
namely b; = e7. The construction presented above does not immediately work
in this case, since in (8.9) the spacing of the dislocations with Burgers vector b; is
infinite. This is due to the fact that to achieve symmetric boundary conditions only
e1 is needed.

To treat this special case one has to make the simple adaptation of taking b, = e;
in the construction, and consequently r;;, = r3,. Then (8.8) becomes

2 .
— Teep = 4sinweq,
"'y

namely
TE

"7y

" 2sina’
8.3.2 Energy

We compute the elastic and curl energy on a single square QF, for i = 1,2, and then
multiply it by the number of the squares in each vertical strip, since the constant
values of j are k-independent.
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The elastic energy
For the elastic energy, note that by (8.2), for ¢ < 1 we have

)
/Q\BM(S)) W(B)dx < C/lest (B,50(2))dx

dist?(B,S0(2))dx,
i=1k=0n=1 /A?,':?UA?,’;?

where N; + 1 = [L/ry,] is the number of squares Q;‘ in the vertical strip Z;. Since
s 1 2 an bn -
dist®(B,S0(2)) < C7£ in A UAY, i=1,2,
n,z

with C > 0, we then have the estimate

2 N; 7
[ dist(8,50(2))dx < c& ¥ 1 2o
0 i=1k=0n=1Tni
2 Nionoq
:C£22 T(rii_rn—lz)
i—1k=0n=1"ni
2 2 5
<Ce? Y (N;+1)m; < Ce? )y
i=1 i=1 "7l
We fix now 7; := [|log(a)|]. Since « ~ sin(a) for a small, by (8.9) we conclude that

/Qdistz(ﬁ,SO(Z))dx < Cea|loga.

By the definition of the energy (8.1), the elastic energy contribution of § is of order
a|logal.
The core energy

The conditions we imposed on the strain B in Section 8.3.1 ensure that the curl of B
is concentrated on the boundaries of the translated inner squares E)DZQ (within Qé‘).
Recall that, since rj,; ~ €/a, i; = [|log(a)|], and 2%rg; = ry,;, we get rg; ~ .
The corresponding energy contribution is then, from (8.1), of order

ﬁl 2 0
€ €£ (B/\e(aDi)) &,

since the number of squares QF in the vertical strip %; is of order a/e. This
contribution is smaller than the elastic energy, which is the dominant term in the
energy.

The total energy, from (8.1), can be estimated from above as
E¢(B,S) < Cua(|loga|+1),

where S = U; (DY + tf»‘), in agreement with the computations of Read and
Shockley.
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Remark 8.3.3. Notice that the choice 7i; = [|log(«)|] is energically optimal once
77, is taken of order ¢/a. Indeed, leaving 7; as free parameters, the energy would
be bounded by

z 1
i=1
It is matter of a simple computation to show that the map

1
xHocx—l—Z—x

is minimized at x ~ —log(«).
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