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Abstract

In this thesis we prove the existence of solutions, in the rate-independent case,
to a strain gradient elasto-plasticity model for small deformations introduced
by Gurtin. The key features of this model are the dependence on the Burgers
vector, which admits non trivial plastic spin, and on the gradient of the plastic
strain. We apply the energetic method by Mielke and coauthors, which is a
well-established approach for proving existence of quasistatic evolutions. We
show that this notion of weak solution is strong enough to give a mathematically
sound meaning to the constitutive equations and to the flow rule of the model.
Finally, by an asymptotic analysis we investigate the relation of the Gurtin
model with the simplified model for plastically irrotational bodies by Gurtin
and Anand and with the classical Prandtl-Reuss model of perfect plasticity.
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Chapter 1

Introduction

Plasticity is the property of a material to sustain permanent deformations. Plas-
tic behavior is observed in most materials, however, its underlying mechanism
can vary widely. In this work we will focus on plasticity in metals. A classical
model is that of Prandtl and Reuss of perfect plasticity. This theory applies to
ideal metals that do not show hardening or softening behavior. Moreover, it is a
small strain model, i.e., it is assumed that the deformation of the body is small
relatively to its size. In such theories the strain tensor, which usually depends
in a non linear way on the gradient of the displacement u, can be linearized.
More precisely, the strain tensor is approximated by the symmetric gradient of
the displacement function u

Eu = 1
2(∇u+ ∇uT ) .

The strain is then additively decomposed to highlight the elastic and plastic
parts

Eu = He +Hp .

The fundamental hypothesis of the Prandtl-Reuss model is that the response
of the body is ideally elastic until a critical threshold is reached; then plastic
deformation occurs without any further increase of the stress. Mathematically,
this is modeled by introducing a convex and closed region K in the stress space,
containing the origin as an interior point. The boundary of K, called the yield
surface, represents the activation threshold for plastic behavior. The Cauchy’s
stress T , which depends linearly on the elastic strain only, satisfies the classical
Hooke’s law T = CHe. Its deviatoric part TD is constrained to belong to the
region K. Finally, the Prandtl-Reuss flow rule states that

Ḣp ∈ NK(TD) , (1.1)

where Ḣp denotes the time derivative of Hp and NK(TD) is the normal cone to
K at the point TD. Equation (1.1) ensures that plastic behavior develops only
when the stress TD is at the boundary of the region K. Different choices for
the region K produce different flow rules (e.g in the case of a ball centered at
the origin one retrieves the Von Mises flow rule).

11



The existence of solutions to the Prandtl-Reuss model was first proved by
Suquet in [27]. Another proof of existence was given in [15] by Dal Maso,
DeSimone, and Mora, using the energetic approach developed by Mielke et
al. (see [17]). Perfect plasticity is, however, mainly a conceptual tool and
usually does not provide quantitatively accurate predictions. This fact is due
to different reasons, some of which we try to highlight here.

First of all, experimental evidence suggests that plasticity depends on the
material size, i.e., the smaller the length scale of the crystal lattice (with respect
to the body length scale), the stronger the material in its plastic response, see
[5]. These effects cannot be captured by the Prandtl-Reuss model since it is
invariant to changes in the length scale. One way to include them is to introduce
size-dependence via strain gradient models.

Secondly, it is well known that plasticity in metals is mainly caused at the
microscopic level by defects of the crystal lattice, called dislocations. The cre-
ation, movement, and annihilation of such defects are the main mechanisms for
the plastic response of the body. However, it is not clear how this microscopic
description is related to the Prandtl-Reuss theory at the continuum level. Fur-
thermore, dislocations pile-up in some regions of the body is responsible for
the hardening phenomenon, which is neglected in perfect plasticity. Several
continuum models have been proposed to take into account some dependence
on the dislocations density. This is usually done by including in the model the
so-called macroscopic Burgers vector B, that is, the curl of the plastic strain

B := curl(Hp) .

Indeed, from a mechanical viewpoint, B quantifies macroscopically the amount
and the location of the defects.

In this thesis we study a strain gradient model accounting for the macro-
scopic Burgers vector, introduced by Gurtin in [10]. Here, the starting assump-
tion is the decomposition of the whole gradient ∇u in an elastic and a plastic
part, which we will improperly call elastic and plastic strain

∇u = He +Hp .

Indeed, to be precise, only the symmetric parts contribute to the strain, while
He
skew and Hp

skew are usually called elastic and plastic spin. The Burgers vector
enters in the model through the free energy of the body

1
2

∫︂
Ω
CHe

sym : He
sym dx+ µL2

2

∫︂
Ω

|B|2 dx , (1.2)

where L > 0 is a length scale associated with B and µ > 0 is a material constant.
It is important to note that the Burgers vector depends on the plastic spin

B = curl(Hp) = curl(Hp
sym) + curl(Hp

skew) .

The flow rule is a generalization of that of Von Mises and takes the following



form:
(Ḣp,∇Ḣp

sym) ∈ NK(T p,Kdiss) , (1.3)

where T p and Kdiss are suitably defined plastic stress tensors that satisfy the
equation

TD − curl(µLBT )D = T p − divKdiss . (1.4)

Here K is a closed and convex set that depends on two scale length, χ and h,
associated to the plastic spin and the strain gradient, respectively. Note that
the flow rule, which is still rate-independent, depends on the strain gradient
∇Hp

sym. Taking the limit as L, χ, h → 0, one formally retrieves the classical
Von Mises flow rule. For a more detailed description of the model we refer to
Chapter 3 and to the original work by Gurtin [10].

The main objective of this thesis is to show the existence of solutions to the
Gurtin model. Inspired by the work by Dal Maso, DeSimone, and Mora we use
the same energetic approach and we introduce the concept of energetic solution.
This is a weak notion of solution where no a priori time regularity is required.
An energetic solution has to satisfy two conditions: a global stability, ensuring
that the body is at the equilibrium at every time during the evolution, and an
energy balance, stating that the sum of the stored energy and the plastic dissipa-
tion equals the work done by the external forces. This framework for quasistatic
evolution problems was developed by Mielke and coauthors in [16, 17, 19, 20,
21]. The strategy to prove the existence of solutions consists in discretizing the
time interval [0, T ] in which the evolution occurs. An incremental minimiza-
tion problem is then solved at each discrete time, using the direct method of
the Calculus of Variations. Since the flow rule (1.3) is rate-independent, the
plastic dissipation has linear growth, hence it is natural to assume Hp

sym to
be a function with bounded variation. Similarly, by the expression of the free
energy (1.2), He

sym and B are assumed to be L2 functions. Moreover, in order
to guarantee compactness of minimizing sequences, a so-called safe-load con-
dition is needed as in the case of perfect plasticity. Approximated evolutions
are then constructed as piecewise-constant-in-time interpolants. Passing to the
limit in the discretization parameter, we finally show that, up to extracting a
subsequence, these approximate solutions converge to an energetic solution to
the Gurtin model.

Subsequently, we show that the notion of energetic solution is strong enough
to recover in a suitable sense the equilibrium equations and the flow rule (1.3)-
(1.4). We first prove that energetic solutions are absolutely continuous in time,
therefore we can speak of their time derivatives. We then show that the flow rule
holds in an integral form, and a pointwise version can be deduced at Lebesgue
points. Moreover, since Hp

sym is a function of bounded variation and in par-
ticular ∇Hp

sym is only a measure, an additional equation involving the singular
part of ∇Hp

sym is needed to supplement the flow rule. As a corollary, we show
that the evolution of the elastic strain and the Burgers vector is completely
determined by the initial configuration of the body, the applied forces, and the
boundary conditions.

Finally, we study the asymptotic behavior of energetic solutions with respect
to the parameters χ, h, and L. We show that, as χ → ∞, it is possible to extract



a subsequence converging in a suitable sense to a solution to the Gurtin-Anand
model. The latter, studied in [6] by Giacomini and Lussardi, is a simplification
of the Gurtin model for plastically irrotational bodies, i.e., satisfying Hp

skew = 0.
In particular, in this model the Burgers vector depends only on the (proper)
plastic strain Hp

sym. To obtain this convergence result it is crucial to refine the
estimates providing the absolute continuity in time of solutions and to make
explicit their dependence on χ. Lastly, we show that, as h, L → 0, energetic
solutions to the Gurtin model converge in a suitable sense, up to subsequences,
to an energetic solution to the Prandtl-Reuss model in the sense of Dal Maso,
DeSimone, and Mora. This result holds independently of the behavior of χ.
We note that this asymptotic analysis cannot be deduced by directly applying
the result by Mielke, Roubíček, and Stefanelli in [18] about the convergence
of quasistatic evolutions. This is due to the possible concentration on the
boundary of the plastic strain, that is just a measure in the energetic formulation
of the Prandtl-Reuss model. To overcome this difficulty we rely again on the
safe-load condition.

To conclude we mention a possible extension of this work. The Gurtin
model can be described as phenomenological, meaning that it is motivated
by experimental considerations. Recently, strain gradient models have been
rigorously derived starting from discrete models of dislocations, see [1, 4, 7,
8, 22, 23, 26]. For instance, in [13] Garroni, Leoni, and Ponsiglione deduce a
stationary model, where the free energy depends, as in the Gurtin model, on the
Burgers vector. However, the dependence is not quadratic and the free energy
has the following form:

1
2

∫︂
Ω
CHe

sym : He
sym dx+ µL2

2

∫︂
Ω
ψ(B) dx ,

where ψ is positively 1-homogeneous. It would be interesting to see if the re-
sults of this thesis could be adapted to this model. We believe that it should
still be possible to prove the existence of a solution in the energetic sense, with
some minor changes. However, it is not clear what form the flow rule should
have and whether the notion of energetic solution is strong enough to give a
mathematically sound meaning to it.

The thesis is organized as follows. In Chapter 2 we introduce the notation
and we give a few preliminary results. In Chapter 3 we describe the Gurtin
model and we specify the functional setting. In Chapter 4 we prove the exis-
tence of energetic solutions to the Gurtin model. In Chapter 5 we show how to
give a meaning to the constitutive equations and the flow rule. In Chapter 6
we study the asymptotics of energetic solutions with respect to the parameters
χ, h, and L.



Chapter 2

Notation and preliminaries

2.1 Notation

Matrices

We denote by Mn×m the space of real n × m matrices. We will work for the
entirety of this paper in the case n = m = 3. M3×3 is naturally endowed with
the Frobenius norm, denoted by |A|, induced by the inner product

A : B =
3∑︂

i,j=1
aijbij , (2.1)

where A = (aij) and B = (bij) belong to M3×3. We denote by M3×3
sym and

M3×3
skew the subspaces ofM3×3 given by symmetric and skew-symmetric matrices,

respectively. It is well known that M3×3
sym is the orthogonal complement of M3×3

skew

with respect to the inner product (2.1). We denote by M3×3
D the subspace of

M3×3 given by all the matrices with vanishing trace, that is,

Tr(A) =
3∑︂
i=1

aii = 0 .

Such matrices are called deviatoric. To simplify the notation we write M3×3
D,sym

in place of M3×3
sym ∩M3×3

D . Given a matrix A ∈ M3×3 we denote the projection
of A on the subspaces of symmetric, skew-symmetric, and deviatoric matrices
by Asym, Askew, and AD, respectively:

Asym = 1
2(A+AT ) ,

Askew = 1
2(A−AT ) ,

AD = A− 1
3 Tr(A) Id .

Here Id denotes the identity matrix in M3×3. For a function φ : R3 → R3 we
write Eφ in place of (∇φ)sym to denote the projection of the gradient on the
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subspace of symmetric matrices. Eφ is called symmetric gradient.

We denote by M3×3×3 the space of third order tensors endowed with the
inner product

A : B =
3∑︂

i,j,k=1
aijkbijk ,

where A = (aijk) and B = (bijk) belong to M3×3×3. The induced norm is
denoted by | · |. We use the notation M3×3×3

sym , M3×3×3
skew , and M3×3×3

D to indicate
the subspaces of M3×3×3 given by all symmetric, skew-symmetric, and devia-
toric tensors in the first two subscripts, respectively. More precisely, a tensor
A = (aijk) is said to be symmetric, skew-symmetric or deviatoric in the first
two subscripts if, respectively,

aijk = ajik ∀ i, j, k = 1, 2, 3 ,
aijk = −ajik ∀ i, j, k = 1, 2, 3 ,

3∑︂
i=1

aiij = 0 ∀ j = 1, 2, 3 .

Given a tensor A = (aijk) we denote the projection of A on the subspaces of
symmetric, skew-symmetric, and deviatoric tensors in the first two subscripts
by Asym, Askew, and AD, respectively:

(Asym)ijk = 1
2(aijk + ajik) ,

(Askew)ijk = 1
2(aijk − ajik) ,

(AD)ijk = aijk − δij
1
3

3∑︂
h=1

ahhk .

where δij is the Kronecker delta.

For an M3×3-valued function Φ : R3 → M3×3 we define

(∇Φ)ijk = ∂Φij

∂xk
, (div Φ)i =

3∑︂
j=1

∂Φij

∂xj
, (curl Φ)ij =

3∑︂
p,q=1

ϵipq
∂Φjq

∂xp
,

where ϵijk is the Levi-Civita symbol. Similarly, for an M3×3×3-valued function
Φ : R3 → M3×3×3 we define

(div Φ)ij =
3∑︂

k=1

∂Φijk

∂xk
.

Given two vectors a, b ∈ R3 we denote by a ⊗ b the matrix defined by
(a⊗ b)ij = aibj and we write a⊙ b in place of (a⊗ b)sym.



Functional spaces

We denote by Lp(U ;X) the space of p-summable functions defined on an open
and Lipschitz subset U ⊂ Rn with values in a Banach space X. When 1 <
p < +∞ the dual of Lp(U ;X) can be identified with Lq(U ;X ′), where q is
the conjugate exponent of p. In particular, this is true whenever X has finite
dimension (e.g. X = Rn or X = M3×3); in this case X ′ = X.

When X is finite dimensional we denote by W 1,p(U ;X) the usual Sobolev
space given by all functions in Lp(U ;X) with distributional gradient in Lp(U ;X).
When p = 2 we write H1(U ;X) in place of W 1,2(U ;X).

By the Rellich-Kondrachov theorem the space W 1,p(U ;X) is compactly em-
bedded in Lp(U ;X).

Every Sobolev function f ∈ W 1,p(U ;X) admits a trace, which we denote by
γ(f) or f when it is clear from the context, as an element of Lp(∂U ;X). The
trace operator

γ : W 1,p(U ;X) → Lp(∂U ;X)

is continuous and compact. The image of the trace operator is the space
W

1− 1
p
,p(∂U ;X) that we denote by H

1
2 (∂U ;X) when p = 2. The kernel of

γ is denoted by W 1,p
0 (U ;X). The dual space of W 1,p(U ;X) is denoted by

W−1,q(U ;X) where q is the conjugate exponent of p. The same notation is
used for the image of the trace operator, so that (H 1

2 (∂U ;X))′ = H− 1
2 (∂U ;X).

For X = M3×3 or X = M3×3×3 we denote by Lpdiv(U ;X) the space of all
functions in Lp(U ;X) with distributional divergence in Lp(U ;Y ). Here Y is the
correct space in which the divergence takes values (i.e. for X = M3×3 it is Y =
R3 and for X = M3×3×3 it is Y = M3×3). For every function f ∈ Lpdiv(U ;X)
the normal trace γν(f) is defined as an element of W−1+ 1

p
,q(∂U ;Y ), where q is

the conjugate exponent of p. More precisely, γν(f) is defined as follows:

⟨γν(f), v⟩ =
∫︂
U

(div f · v + f · ∇v) dx ,

where the dual product on the left-hand side is the one betweenW−1+ 1
p
,q(∂U ;Y )

and W
1− 1

p
,p(∂U ;Y ).

Absolutely continuous functions

We denote by AC(0, T ;X) the space of absolutely continuous functions on [0, T ]
with values in a Banach space X. We refer to [3] for the main properties of
this space. If X is reflexive, every f ∈ AC(0, T ;X) has a weak time-derivative
ḟ ∈ L1(0, T ;X). Moreover, the fundamental theorem of calculus holds. Namely,

f(t) − f(s) =
∫︂ t

s
ḟ(τ) dτ ∀ s, t ∈ [0, T ] .

If X is the dual of a separable Banach space, by Theorem 7.1 in [15] every
f ∈ AC(0, T ;X) admits a time-derivative as the weak∗-limit of the difference
quotients for almost every t ∈ [0, T ]. In this case it is possible to show that the



map
t ↦→ ∥ḟ(t)∥X

is measurable and belongs to L1(0, T ;R).
We will often use the following generalization of the Arzelà-Ascoli Theorem.

Theorem 2.1.1. Let X be a reflexive Banach space (resp. the dual of a sep-
arable Banach space). Let (fk)k∈N ⊂ AC(0, T ;X) be a sequence of equiabso-
lutely continuous functions with respect to k such that fk(0) is bounded in X.
Then, there exist a subsequence (fkh

) and a function f ∈ AC(0, T ;X) such that
fkh

(t) ⇀ f(t) (resp. fkh
(t) ∗

⇀ f(t)) for every t ∈ [0, T ].

Proof. We give the proof for X a reflexive Banach space. The same argument
with minor changes applies to X the dual of a separable Banach space.

By the hypothesis the sequence (fk(t))k is uniformly bounded in X for
every t ∈ [0, T ]. Let (ti)i be an enumeration of the rational numbers in the
interval [0, T ]. By the reflexivity of X and a diagonal argument there exist a
subsequence (kh)h such that

fkh
(ti) ⇀ f(ti) in X ∀ i ∈ N ,

for some f(ti) ∈ X. Let t ∈ [0, T ] and ε > 0. By the hypothesis there exist a
constant C and a function g ∈ L1(0, T ), both independent of k, such that

∥fkh
(t1) − fkh

(t2)∥X ≤ C

∫︂ t2

t1
g(t) dt ∀ h ∈ N (2.2)

for every t1 < t2 ∈ [0, T ]. By density there exists i ∈ N such that |t−ti| ≤ ε and
we can suppose without loss of generality that ti < t. Then, for every ψ ∈ X ′

and for every l ∈ N we have

|⟨ψ, fkh+l
(t) − fkh

(t)⟩| ≤ |⟨ψ, fkh+l
(t) − fkh+l

(ti)⟩|
+ |⟨ψ, fkh+l

(ti) − fkh
(ti)⟩| + |⟨ψ, fkh

(ti) − fkh
(t)⟩|

≤ |⟨ψ, fkh+l
(ti) − fkh

(ti)⟩| + ∥ψ∥X′∥fkh+l
(t) − fkh+l

(ti))∥X
+ ∥ψ∥X′∥fkh

(ti) − fkh
(t))∥X ≤ |⟨ψ, fkh+l

(ti) − fkh
(ti)⟩|

+ 2C∥ψ∥X′

∫︂ t

ti

g(t) dt ≤ |⟨ψ, fkh+l
(ti) − fkh

(ti)⟩| + 2εC∥ψ∥X′∥g∥L1

Therefore, the sequence (⟨ψ, fkh
(t)⟩)h is a Cauchy sequence for every ψ ∈ X ′.

Let
lψ = lim

h→∞
⟨ψ, fkh

(t)⟩ .

By the Banach-Steinhaus theorem the map

Ψ : X ′ → R : ψ ↦→ lψ

belongs to X ′′, hence, by the reflexivity of X we can identify Ψ with an element
f(t) ∈ X. In particular we have shown that fkh

(t) ⇀ f(t) in X. We are left to



prove that the map
f : [0, T ] → X : t ↦→ f(t)

is absolutely continuous. By the weak lower semicontinuity of the norm and
(2.2) we deduce that

∥f(t1) − f(t2)∥X ≤ C

∫︂ t2

t1
g(t) dt

for every t1 < t2 ∈ [0, T ]. Hence, f belongs to AC(0, T ;X).

Measures

We denote by L n the n-dimensional Lebesgue measure and by H n the n-
dimensional Hausdorff measure.

We denote by Mb(U ;Rm) the space of bounded Borel measures defined on
an open and Lipschitz subset U ⊂ Rn with values in Rm. Mb(U ;Rm) is a
Banach space with respect to the norm ∥µ∥Mb

:= |µ|(U), where |µ| is the total
variation of µ.

Every measure µ admits a Lebesgue decomposition µ = µa+µs, where µa is
absolutely continuous and µs is singular with respect to L n. If a measure µ is
absolutely continuous with respect to L n, then we will always identify it with
its density. In this way we embed continuously L1(U ;Rm) into Mb(U ;Rm).

The space Mb(U ;Rm) is the dual of C0(U ;Rm), the space of continuous
functions φ : U → Rm such that for every ε > 0 the set

{x ∈ U : |φ(x)| > ε}

is compact (see Theorem 6.19 in [25]). Therefore, Mb(U ;Rm) is naturally en-
dowed with the weak∗ topology induced by this duality.

Functions with bounded variation

Let U ⊂ Rn be an open set with Lipschitz boundary. We denote by BV(U ;Rm)
the space of functions in L1(U ;Rm) with distributional gradient in Mb(U ;Mm×n).
BV(U ;Rm) is a Banach space with the norm

∥ψ∥BV := ∥ψ∥L1 + ∥∇ψ∥Mb
.

For a given ψ ∈ BV(U ;Rm) we write the Lebesgue decomposition of ∇ψ as
follows:

∇ψ = ∇aψ + ∇sψ .

The space BV(U ;Rm) is continuously embedded in L
n

n−1 (U ;Rm).
It is known that BV(U ;Rm) is the dual space of a separable Banach space

(Proposition 2.4 in [24]). We will equip BV(U ;Rm) with the weak∗ topology
given by this duality.

We denote by BV(0, T ;X) the space of all functions f : [0, T ] → X with
bounded variation in [0, T ]. The variation of a function f : [0, T ] → X is defined



as follows:

V(f ; 0, T ) = sup
{︄

n∑︂
i=1

∥f(ti) − f(ti−1)∥X : n ∈ N and

0 = t0 < t1 < · · · < tn−1 < tn = T

}︄
.

Every function f ∈ BV(0, T ;X) has at most countable many discontinuity
points.

We will often use the following generalization of the classical Helly Theorem.

Theorem 2.1.2. Let X be a reflexive separable Banach space (resp. the dual
of a separable Banach space). Let (fk)k∈N ⊂ BV(0, T ;X) be a sequence of
functions such that fk(0) and V(fk; 0, T ) are bounded uniformly with respect to
k. Then, there exist a subsequence (fkh

) and a function f ∈ BV(0, T ;X) such
that fkh

(t) ⇀ f(t) (resp. fkh
(t) ∗

⇀ f(t)) for every t ∈ [0, T ].

For a proof of this result we refer to [15] (Lemma 7.2) and [2] (Theorem
1.126).

Function with bounded deformation

Let U ⊂ Rn be an open set with Lipschitz boundary. We denote by BD(U) the
space of functions with bounded deformation. Precisely, a function f belongs to
BD(U) if it is in L1(U ;Rn) and its symmetric gradient Ef is a bounded Borel
measure. We refer to [28] for a detailed description of such space.

BD(U) is a Banach space with the norm

∥f∥BD := ∥f∥L1 + ∥Ef∥Mb
.

It is possible to prove that BD(U) is the dual of a separable Banach space.
Therefore, we can equip BD(U) with the weak∗ topology given by this duality.

The space BD(U) is continuously embedded in L
n

n−1 (U ;Rn).
For every function f ∈ BD(U) it is possible to define the trace of f as an

element of L1(∂U ;Rn). The trace operator

γ : BD(U) → L1(∂U ;Rm)

is continuous with respect to the norm topology but not with respect to the
weak∗ topology of BD(U).

2.2 A few inequalities

We recall here the classical Korn and Poincaré inequalities and we prove a few
extensions that will be useful in the rest of the work.

Theorem 2.2.1 (Korn inequality). Let U ⊂ RN be an open, bounded, and
connected set with Lipschitz boundary and let 1 < p < +∞. Then there exists



C > 0 such that

∥∇u∥Lp ≤ C(∥Eu∥Lp + ∥u∥Lp) ∀ u ∈ W 1,p(U ;RN ) , (2.3)

where Eu is the symmetric gradient of u. Moreover, there exists C ′ > 0 such
that for every u ∈ W 1,p(U ;RN ) there is A ∈ MN×N

skew such that

∥∇u−A∥Lp ≤ C ′∥Eu∥Lp . (2.4)

For a proof of this classical result we refer to Theorem 3 and 8 in [12].

Lemma 2.2.1. Let A = (aij) ∈ MN×N
skew . Then RankA ̸= 1.

Proof. Suppose by contradiction that RankA = 1. Let A1, . . . , An be the rows
of A and let i, j ∈ {1, . . . , N} with i ̸= j. By assumption there exists λ ∈ R
such that Ai = λAj . Hence, aij = λajj = 0. Since A is skew-symmetric we
deduce aji = 0. Then A = 0, a contradiction.

Theorem 2.2.2. Let U ⊂ RN be an open, bounded, and connected set with
Lipschitz boundary and let 1 < p < +∞. Let Γ ⊂ ∂U be an open subset (in
the relative topology of ∂U) such that H N−1(Γ) > 0. Then there exists K > 0
such that

∥∇u∥Lp ≤ K(∥Eu∥Lp + ∥γΓ(u)∥Lp) ∀ u ∈ W 1,p(U ;RN ) , (2.5)

where γΓ(u) is the trace of u restricted to Γ.

Proof. Suppose by contradiction that the thesis is false. Then for every n ∈ N
there exists a function un ∈ W 1,p(U ;RN ) such that

∥∇un∥Lp > n(∥Eun∥Lp + ∥γΓ(un)∥Lp) . (2.6)

Let wn := 1
∥un∥W 1,p

un, so that for every n ∈ N we have ∥wn∥W 1,p = 1. Clearly,

(2.6) holds with wn in place of un. Up to a subsequence, there exists w ∈
W 1,p(U ;RN ) such that

wn ⇀ w in W 1,p(U ;RN ) .

By the compact embedding W 1,p(U ;RN ) ⊂⊂ Lp(U ;RN ) we deduce that

wn → w in Lp(U ;RN ) .

Similarly, by the compactness of the trace operator we infer

γΓ(wn) → γΓ(w) in Lp(∂U ;RN ) .

By (2.6) we have

∥Ewn∥Lp + ∥γΓ(wn)∥Lp <
1
n

∥∇wn∥Lp ≤ 1
n

∀ n ∈ N ,



hence, γΓ(w) = 0 and Ew = 0. By Theorem 2.2.1 there exists a matrix A ∈
M3×3
skew such that ∇w−A = 0. Since U is connected, it must be w(x) = Ax+ b

for a.e x ∈ U , where b ∈ RN is a fixed vector. In particular, we have proved
that Γ is a subset of the space of solutions of the linear system Ax = −b. By
the Rouché-Capelli Theorem and Lemma 2.2.1 we know that the dimension of
this space is not equal to N − 1. Therefore, since H N−1(Γ) > 0, it must be
A = 0 and b = 0, that is, w = 0. By Theorem 2.2.1 we obtain

∥∇wn∥Lp ≤ C(∥Ewn∥Lp + ∥wn∥Lp) → 0 ,

which gives ∇wn → ∇w = 0 in Lp(U ;RN ). This is a contradiction, since
wn → w in W 1,p(U ;RN ), but ∥wn∥W 1,p ̸→ ∥w∥W 1,p .

Theorem 2.2.3 (Poincaré inequality). Let U ⊂ RN be an open, bounded, and
connected set with Lipschitz boundary and let 1 ≤ p < +∞. Then there exists
CP > 0 such that

∥u∥Lp ≤ CP ∥∇u∥Lp ∀ u ∈ W 1,p
0 (U ;RN ) . (2.7)

Theorem 2.2.4. Let U ⊂ RN be an open, bounded, and connected set with
Lipschitz boundary and let 1 ≤ p < +∞. Let Γ ⊂ ∂U be an open subset (in the
relative topology of ∂U) such that H N−1(Γ) > 0. Then there exists CP > 0
such that

∥u∥Lp ≤ CP (∥∇u∥Lp + ∥γΓ(u)∥Lp) ∀ u ∈ W 1,p(U ;RN ) . (2.8)

Proof. Suppose by contradiction that the thesis is false. Then there is a se-
quence (un)n∈N ⊂ W 1,p(U,RN ) such that

∥un∥Lp > n(∥∇un∥Lp + ∥γΓ(un)∥Lp) ∀ n ∈ N . (2.9)

Up to normalization, we can suppose that ∥un∥W 1,p = 1 for every n ∈ N. By
compactness, up to a subsequence, there exists u ∈ Lp(U ;RN ) such that un → u
in Lp(U ;RN ). By (2.9) we have

∥∇un∥Lp + ∥γΓ(un)∥Lp <
1
n

∥un∥Lp ≤ 1
n

∀ n ∈ N ,

hence ∇un → 0 in Lp(U ;RN ) and γΓ(un) → 0 in Lp(Γ;RN ). Therefore, we
have proved that un → u in W 1,p(U ;RN ) and by the continuity of the trace
operator γ(u) = 0. In particular, ∇u = 0, thus u = b a.e in U with b ∈ RN a
fixed vector. By γΓ(u) = 0 we deduce b = 0 and this gives the contradiction.
Indeed, we have un → 0 in W 1,p(U ;RN ), but ∥un∥W 1,p → 1.

We will also need the following inequality for functions of bounded defor-
mation.

Theorem 2.2.5. Let U ⊂ RN be an open, bounded, and connected set with
Lipschitz boundary. Let Γ ⊂ ∂U be an open subset (in the relative topology of



∂U) such that H N−1(Γ) > 0. Then there exists CBD > 0 such that

∥u∥BD ≤ CBD(∥Eu∥Mb
+ ∥γΓ(u)∥L1) ∀ u ∈ BD(U) . (2.10)

Proof. Owing to Proposition 2.3, item (ii), in [29] it is sufficient to prove that
∥γΓ(·)∥L1 is a continuous seminorm on BD(U) and a norm on the set of rigid
motions given by

R = {u : U → RN : u(x) = Ax+ b, A ∈ MN×N
skew , b ∈ RN} .

By the continuity of the trace operator with respect to the strong topology of
BD and its linearity the map ∥γΓ(·)∥L1 is a seminorm on BD(U) and thus, on
R. Let u = Ax+ b ∈ R be such that ∥γΓ(u)∥L1 = 0, that is, u = 0 on Γ. Then,
Γ is a subset of the space of solutions of the linear system Ax = −b. By the
Rouché-Capelli Theorem and Lemma 2.2.1 we know that the dimension of this
space is not equal to N − 1. Therefore, it must be A = 0, b = 0 concluding the
proof.

Finally, we state a recent generalization of the classical Korn inequality
proved by Lewintan and Neff in [14].

Proposition 2.2.1. Let U ⊂ R3 be an open, bounded, and connected set with
Lipschitz boundary. Let 1 < p < ∞ and let f ∈ D ′(U ;M3×3) be a distribution.
If fsym ∈ Lp(U ;M3×3

sym) and curl(f) ∈ W−1,p(U ;M3×3), then f ∈ Lp(U ;M3×3).
Moreover, there exist a constant C > 0, that depends only on p and U , such
that

∥f∥Lp ≤ C(∥fskew∥W−1,p + ∥fsym∥Lp + ∥ curl(f)∥W−1,p) .





Chapter 3

The model

3.1 Description of the model

In this section we give a brief description of the model proposed by Gurtin in
[10]. Let Ω ⊂ R3 be the reference configuration of the body and let u : Ω → R3

be the displacement (so that a point x ∈ Ω is mapped into the point x + u(x)
in the deformed configuration). As it is common in small-strain models, we
assume the displacement gradient to be additively decomposed into an elastic
and a plastic part, respectively:

∇u = He +Hp . (3.1)

Since plastic deformations in metals are volume preserving, we assume Hp to
be deviatoric, that is TrHp = 0. In contrast with other models, such as the
one proposed by Gurtin and Anand in [11] and studied in [6], here we do not
impose that Hp

skew = 0, meaning that we admit plastic spin. In particular we
do not restrict our attention only to the symmetric part of the displacement
gradient. This is motivated by the macroscopic representation of the so-called
Burgers vector, namely

B = curl(Hp) = curl(Hp
sym) + curl(Hp

skew) . (3.2)

The Burgers vector describes the macroscopic density of dislocations, which are
defects in the crystalline structure at the microscopic level and are considered
the main mechanism for plastic deformation. Clearly, Hp

skew is involved in the
definition of B and needs to be considered in a theory that takes into account
the Burgers vector.

Gurtin grounds his model on the principle of virtual power and introduces
two microscopic stress tensors, called T p and K, that perform work locally
together with the temporal change of Hp and ∇Hp, respectively. Moreover, he
defines an elastic stress tensor, named T , conjugate to the rate of change of He.
Given a subbody P ⊂ Ω, the power expended internally has the form

Wint(P ) =
∫︂
P

(T : Ḣe + T p : Ḣp +K : ∇Ḣp) dx . (3.3)
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Wint(P ) is balanced by the power expended on P by exterior forces. This is
the result of a macroscopic body force f and a surface traction t(n⃗) with the
addition of a microtraction S(n⃗) associated with Ḣp and can be written as

Wext(P ) =
∫︂
∂P

(t(n⃗) · u̇+ S(n⃗) : Ḣp) dA+
∫︂
P
f · u̇ dx . (3.4)

Since TrHp = 0, we can suppose without loss of generality that T p and S(n⃗)
are deviatoric and, for the same reason, that K is deviatoric in the first two
subscripts. By the power balance

Wint(P ) = Wext(P ) ∀ P ⊂ Ω , (3.5)

we deduce the following conditions on the macroscopic traction and external
forces:

t(n⃗) = T n⃗ , (3.6)
− div(T ) = f . (3.7)

In particular, if a superficial force g acts on a portion of the boundary ΓN ⊂ ∂Ω
we can write

T n⃗ = g on ΓN . (3.8)

Similarly, one obtains the balance condition for the microscopic forces and trac-
tion, namely

TD = T p − divK , (3.9)
S(n⃗) = Kn⃗ , (3.10)

where TD denotes the deviatoric part of T . In this work we will assume null
power expenditure on the boundary by K, that is,

S(n⃗) = Kn⃗ = 0 on ∂Ω . (3.11)

Lastly, by frame-indifference it is possible to derive a well-known condition on
the stress T , precisely its symmetry T = T T .

The Burgers vector enters the model through the free energy ψ. Here we
consider a quadratic free energy given by

ψ(He, B) := µ|He
sym,D|2 + 1

2k| TrHe
sym|2 + µL2

2 |B|2 , (3.12)

where µ, k, L > 0 are positive constants. In this context L has to be interpreted
as a material length scale associated with the Burgers tensor. For any given
subbody P ⊂ Ω the energy takes the integral form

Ψ(P ) =
∫︂
P
ψ(He, B) dx . (3.13)

The evolution of the triplet (u(t), He(t), Hp(t)) needs to satisfy a local ther-



modynamical requirement, namely the inequality

ψ̇ − T : Ḣe
sym − T p : Ḣp −K : ∇Ḣp ≤ 0 , (3.14)

where we used the symmetry of T . In order to satisfy inequality (3.14), Gurtin
proposes the following constitutive equation for the stress tensors T :

T := ∂ψ

∂He
sym

, (3.15)

that in our case rewrites as
T = CHe

sym , (3.16)

where C is the tensor given by

CA = 2µAsym,D + kTr(Asym) Id ∀A ∈ M3×3 . (3.17)

Then, letting

R :=
∂ψ(He

sym, B)
∂B

, (3.18)

Gurtin defines

(Kdiss)ijk = Kijk −
3∑︂

h=1
ϵhkjRhi + 1

3δij
3∑︂

h,l=1
ϵhklRhl , (3.19)

where ϵ is the Levi-Civita symbol and δ is the usual Kronecker symbol. Clearly
Kdiss is deviatoric in the first two indices and, considering (3.15), inequality
(3.14) takes the form

T p : Ḣp +Kdiss : ∇Ḣp ≥ 0 . (3.20)

To satisfy this condition Gurtin proposes the following constitutive equations
for the stresses T p and Kp

diss in the rate-independent case:

T p := Y0
Ḣp
sym + χḢp

skew

dp
, (3.21)

Kdiss := Y0
h∇Ḣp

sym

dp
, (3.22)

where
dp =

√︂
|Hp

sym|2 + χ|Hp
skew|2 + h2|∇Hp

sym|2 (3.23)

is the effective distortion-rate, h, χ > 0 are positive constants, and Y0 > 0 is
the yield strength. Notice that with these choices we can suppose that Kdiss

is symmetric in the first two subscripts. As a remark we can see that when
χ, h → 0 the framework reduces to the one of the Von Mises flow rule in perfect
plasticity.



In this scenario the stress tensors have to satisfy the constraint√︄
|T psym|2 + 1

χ
|T pskew|2 + 1

h2 |Kdiss|2 ≤ Y0 , (3.24)

where the equality can be interpreted as the stresses lying on the yield surface.
For this very reason equations (3.21) and (3.22) will be valid when equality holds
in (3.24). Viceversa, if the stresses lie well inside the set bounded by the yield
surface, no changes occur in the plastic strain, that is, Ḣp = 0, ∇Ḣp

sym = 0.
With these choices the thermodynamical requirement (3.14) is satisfied.

3.2 The functional setting

3.2.1 Reference configuration and boundary conditions

We now introduce the precise mathematical setting of the problem. We assume
the reference configuration of the body to be an open, bounded, and connected
set with Lipschitz boundary. The Dirichlet part of the boundary is assumed to
be a non-empty open subset ΓD ⊂ ∂Ω (here open refers to the relative topology
in ∂Ω). The set ΓN := ∂Ω\ΓD is the Neumann part of the boundary. In
particular, H 2(ΓD) > 0, where H 2 is the 2-dimensional Hausdorff measure.

The forces

f ∈ AC(0, T ;L3(Ω;R3)) , g ∈ AC(0, T ;L3(ΓN ;R3)) (3.25)

will be prescribed on Ω and ΓN , respectively. On the Dirichlet part of the
boundary a displacement

w ∈ AC(0, T ;H1(Ω;R3)) (3.26)

is imposed. As a remark note that w is defined on the whole set Ω, but the
boundary condition is prescribed only on ΓD via the trace operator.

For every time t ∈ [0, T ] we define the operator

L(t) : W 1, 3
2 (Ω;R3) → R : u ↦→

∫︂
Ω
f(t) · u dx+

∫︂
ΓN

g(t) · u dH 2 . (3.27)

Clearly, L(t) is linear and continuous, hence we have L(t) ∈ W−1,3(Ω;R3). In
addition, by the absolute continuity of f and g it follows that the operator L
is absolutely continuous with values in W−1,3(Ω;R3). We will write ⟨L(t), u⟩
when L(t) is applied to u.

Since f and g are absolutely continuous with values in a reflexive space, the
time derivatives ḟ and ġ are well defined almost everywhere. For almost every
t ∈ [0, T ] we will denote by L̇(t) the continuous and linear operator given by

L̇(t) : W 1, 3
2 (Ω;R3) → R : u ↦→

∫︂
Ω
ḟ(t) · u dx+

∫︂
ΓN

ġ(t) · u dH 2 . (3.28)



3.2.2 Admissible configurations

We will keep the notation already used and we will denote by u the displacement
and by He, Hp the elastic and plastic part of the strain, respectively.

Definition 3.2.1. Let z ∈ H1(Ω;R3). A triplet (u,He, Hp) is said to be ad-
missible for the boundary value z if and only if:

u ∈ W 1, 3
2 (Ω;R3) , He

sym ∈ L2(Ω;M3×3
sym) ,

Hp
sym ∈ BV(Ω;M3×3

D,sym) , Hp
skew ∈ Mb(Ω;M3×3

skew) , (3.29)
curlHp ∈ L2(Ω;M3×3) ,

∇u = He +Hp , (3.30)

u = z in L
3
2 (ΓD;R3) , (3.31)

where equation (3.31) has to be intended in the sense of trace. We will denote
by A(z) the set of admissible triplets (u,He, Hp) for the boundary value z.

From now on, when we will speak of an admissible plastic strain Hp we will
imply that there is a boundary value z ∈ H1(Ω;R3) and an admissible triplet
(v, e, p) ∈ A(z) such that p = Hp. Similarly, we will speak of an admissible
time-dependent plastic strain whenever we will have a map t ↦→ Hp(t) such that
Hp(t) is an admissible plastic strain for every t ∈ [0, T ].

Owing to Proposition 2.2.1, admissible triplets have more regularity than
the one prescribed by their definition. More precisely, we have the following.

Proposition 3.2.1. Let z ∈ H1(Ω;R3) and let (u,He, Hp) ∈ A(z). Then

He , Hp ∈ L
3
2 (Ω;M3×3) . (3.32)

Moreover, there exists C > 0, which depends only on Ω, such that

∥Hp∥
L

3
2

≤ C(∥Hp
skew∥Mb

+ ∥Hp
sym∥BV + ∥ curlHp∥L2) . (3.33)

In particular, from this result we infer that

Hp
skew = Hp −Hp

sym ∈ L
3
2 (Ω;M3×3) . (3.34)

Hence, Hp
skew is absolutely continuous with respect to the Lebesgue measure.

3.2.3 The dissipation functional

To enforce the constraint (3.24) we introduce the functional, defined for suffi-
ciently regular plastic strains p

p ↦→ Y0

∫︂
Ω

√︂
|psym|2 + χ|pskew|2 + h2|∇psym|2 dx . (3.35)



Following [15] and [6] we relax the functional (3.35) using the notion of convex
functions of measure introduced in [9]. First, we introduce the function

F : M3×3
sym ×M3×3

skew ×M3×3×3
sym → R : (x, y, z) ↦→

√︂
|x|2 + χ|y|2 + h2|z|2 .

For p ∈ Mb(Ω;M3×3
D ) with psym ∈ BV (Ω;M3×3

D,sym) let λ be the measure on Ω
defined by

λ = (psym, pskew,∇psym) . (3.36)

We define
H : p ↦→ Y0

∫︂
Ω
F
(︃
λ

|λ|

)︃
d|λ| , (3.37)

where |λ| is the total variation measure of λ and λ

|λ|
is the Radon-Nikodým

derivative of λ with respect to |λ|.
Let Hp be an admissible plastic strain and let λ be the measure defined as

in (3.36) with p = Hp. We can decompose λ in its absolutely continuous and
singular parts with respect to the Lebesgue measure. By the regularity of Hp

it is clear that

λa = (Hp
sym, H

p
skew,∇

aHp
sym) and λs = (0, 0,∇sHp

sym) . (3.38)

Hence, by Theorem 2 in [9], it follows that

H(Hp) =Y0

∫︂
Ω

√︂
|Hp

sym|2 + χ|Hp
skew|2 + h2|∇aHp

sym|2 dx

+ hY0|∇sHp
sym|(Ω) , (3.39)

where |∇sHp
sym|(Ω) is the total variation over Ω of the singular part of the

measure ∇Hp
sym. Sometimes we will shorten the decomposition (3.39) and

write
H(Hp) = H1(Hp) + H2(Hp) . (3.40)

We will often use the following lower semicontinuity result.

Proposition 3.2.2. Let (Hp
n)n∈N be a sequence of admissible plastic strains

such that

Hp
n,sym

∗
⇀ Hp

sym in BV(Ω;M3×3
sym) ,

Hp
n,skew

∗
⇀ Hp

skew in Mb(Ω;M3×3
skew) .

Then
H(Hp) ≤ lim inf

n→∞
H(Hp

n) .

Proof. Thanks to Theorem 3 in [9] it is sufficient to prove that the measure λn,
defined as in (3.36) with p = Hp

n, converges weakly∗ in the sense of measures
to λ = (Hp

sym, H
p
skew,∇Hp

sym). This assertion follows immediately from the
hypotheses.

Another important property of H is its continuity along strongly converging



sequences, as proved in the following proposition.

Proposition 3.2.3. Let (Hp
n)n∈N be a sequence of admissible plastic strains

such that

Hp
n,sym → Hp

sym in BV(Ω;M3×3
sym) ,

Hp
n,skew → Hp

skew in Mb(Ω;M3×3
skew) .

Then
lim
n→∞

H(Hp
n −Hp) = 0 .

Proof. By the regularity of the admissible plastic strains and the supposed
convergences we have that

Hp
n,sym → Hp

sym in L1(Ω;M3×3
sym) ,

∇aHp
n,sym → ∇aHp

sym in L1(Ω;M3×3
sym) ,

∇sHp
n,sym → ∇sHp

sym in Mb(Ω;M3×3
sym) ,

Hp
n,skew → Hp

skew in L1(Ω;M3×3
skew) .

Then

H(Hp
n −Hp) ≤ Y0∥Hp

n,sym −Hp
sym∥L1 + Y0

√
χ∥Hp

n,skew −Hp
skew∥L1

+ hY0∥∇aHp
n,sym − ∇aHp

sym∥L1 + hY0|∇sHp
n,sym − ∇sHp

sym|(Ω) → 0 .

Given an admissible time-dependent plastic strain t ↦→ Hp(t) we will use
throughout the paper the following notation for the H-variation:

VH(Hp; 0, t) = sup
{︄

n∑︂
i=1

H(Hp(ti) −Hp(ti−1)) : n ∈ N and

0 = t0 < t1 < · · · < tn−1 < tn = t

}︄
. (3.41)

VH satisfies the following lower semicontinuity result.

Proposition 3.2.4. Let (Hp
n)n∈N be a sequence of admissible time-dependent

plastic strains such that for every t ∈ [0, T ] the following convergences hold:

Hp
n,sym(t) ∗

⇀ Hp
sym(t) in BV(Ω;M3×3

sym) ,
Hp
n,skew(t) ∗

⇀ Hp
skew(t) in Mb(Ω;M3×3

skew) .

Then
VH(Hp; 0, t) ≤ lim inf

n→∞
VH(Hp

n; 0, t) ∀ t ∈ [0, T ] .

Proof. Let n ∈ N and t ∈ [0, T ]. Let {t0, . . . , tk} be a partition of the interval



[0, t]. By definition of H-variation and by Proposition 3.2.2 we have

lim inf
n→∞

VH(Hp
n; 0, t) ≥ lim inf

n→∞

k∑︂
i=1

H(Hp
n(ti) −Hp

n(ti−1))

≥
k∑︂
i=1

H(Hp(ti) −Hp(ti−1)) . (3.42)

Passing to the supremum over all partitions of the interval [0, t] gives the thesis.

3.2.4 The free energy

We will consider the quadratic free energy defined in (3.12). Given an admissible
triplet (u,He, Hp) we will write

Ψ(He
sym, curl(Hp)) = 1

2

∫︂
Ω
CHe

sym : He
sym dx+ µL2

2

∫︂
Ω

| curl(Hp)|2 dx , (3.43)

where C is the symmetric tensor in (3.17). Since k > 0 there are αC, βC > 0
such that

αC|M |2 ≤ CM : M ≤ βC|M |2 ∀ M ∈ M3×3
sym . (3.44)

By (3.44) it follows that

|CM | ≤ βC|M | ∀ M ∈ M3×3
sym . (3.45)

We will often use the notation

Ψ(He, curl(Hp)) = Ψ1(He
sym) + Ψ2(curl(Hp)) (3.46)

to shorten the expression (3.43).

3.2.5 Safe-load condition

As in the case of perfect plasticity (see [15]) we need to assume a so-called safe-
load condition on the applied forces. More precisely, for the rest of the work
we will assume the existence of a function

ρ ∈ AC(0, T ;L3
div(Ω;M3×3

sym)) with ρD ∈ AC(0, T ;L∞(Ω;M3×3
D,sym)) (3.47)

such that, for every t ∈ [0, T ]{︄
− div ρ(t) = f(t) in L3(Ω;R3) ,
γν(ρ(t)) = g(t) on ΓN ,

(3.48)

where γν is the normal trace. The second equation in (3.48) has to be intended
in the following sense: for every ψ ∈ W

1
3 ,

3
2 (∂Ω,R3) such that ψ = 0 H 2-a.e on



ΓD
⟨γν(ρ(t)), ψ⟩ =

∫︂
ΓN

g · ψ dH 2 , (3.49)

where the duality at the left-hand side is the one between W− 1
3 ,3(∂Ω;R3) and

W
1
3 ,

3
2 (∂Ω;R3).

Moreover, we will suppose the existence of a constant M > 0 such that for
every t ∈ [0, T ]

|A+ ρD(t)| ≤ Y0 a.e in Ω ∀ A ∈ M3×3
D with |A| ≤ M . (3.50)

We will assume that M < Y0 without loss of generality. The main consequence
of the safe-load condition is the following proposition.

Proposition 3.2.5. Let z ∈ H1(Ω;R3). Suppose that a function ρ exists satis-
fying (3.47), (3.48), and (3.50). Then, for every t ∈ [0, T ] and for every triplet
(u,He, Hp) ∈ A(z) we have

⟨L(t), u⟩ =⟨L(t), z⟩ −
∫︂

Ω
ρ(t) : Ez dx

+
∫︂

Ω
ρ(t) : He

sym dx+
∫︂

Ω
ρD(t) : Hp

sym dx . (3.51)

Proof. Let t ∈ [0, T ]. By definition of the operator L(t) we have

⟨L(t), u− z⟩ =
∫︂

Ω
f(t) · (u− z) dx+

∫︂
ΓN

g(t) · (u− z) dH 2 . (3.52)

Since ρ(t) satisfies (3.48), integrating by parts yields

⟨L(t), u− z⟩ =
∫︂

Ω
ρ(t) : ∇(u− z) dx− ⟨γν(ρ(t)), u− z⟩

+
∫︂

ΓN

g(t) · (u− z) dH 2 . (3.53)

Note that u− z = 0 H 2-a.e on ΓD, hence by (3.49)∫︂
ΓN

g(t) · (u− z) dH 2 − ⟨γν(ρ(t)), u− z⟩ = 0 .

Finally, by the admissibility of (u,He, Hp) and the symmetry of ρ(t), equation
(3.53) can be rewritten as follows:

⟨L(t), u− z⟩ =
∫︂

Ω
ρ(t) : He

sym dx+
∫︂

Ω
ρD(t) : Hp

sym dx−
∫︂

Ω
ρ(t) : Ez dx ,

concluding the proof.

In a similar fashion one can prove the same result for the operator L̇. As a
remark note that assumptions (3.47) grants the existence of the time derivatives
ρ̇ and ρ̇D almost everywhere.



Proposition 3.2.6. Let z ∈ H1(Ω;R3). Suppose that a function ρ exists satis-
fying (3.47), (3.48), and (3.50). Then, for almost every t ∈ [0, T ] and for every
triplet (u,He, Hp) ∈ A(z) we have

⟨L̇(t), u⟩ =⟨L̇(t), z⟩ −
∫︂

Ω
ρ̇(t) : Ez dx

+
∫︂

Ω
ρ̇(t) : He

sym dx+
∫︂

Ω
ρ̇D(t) : Hp

sym dx . (3.54)

3.2.6 Energetic solutions

We will prove existence of solutions for the Gurtin model using the energetic
approach to rate-independent processes developed in [16, 17, 19, 20, 21]. We
state here the definition of a solution to the Gurtin model in this framework.

Definition 3.2.2. Let f, g be as in (3.25) and w be as in (3.26). A map

Φ : [0, T ] → W 1, 3
2 (Ω;R3) × L

3
2 (Ω;M3×3) × L

3
2 (Ω;M3×3

D ) :
t ↦→ (u(t), He(t), Hp(t))

is an energetic solution to the Gurtin model if the following properties hold true:

• Admissibility:

(u(t), He(t), Hp(t)) ∈ A(w(t)) ∀ t ∈ [0, T ] , (3.55)

• Global stability:

E(t) ≤ Ψ1(esym) + Ψ2(curl(p)) − ⟨L(t), v⟩ + H(p−Hp(t))
∀ (v, e, p) ∈ A(w(t)) ∀ t ∈ [0, T ] , (3.56)

• Bounded variation: Hp
sym and Hp

skew have bounded variation as maps

Hp
sym : [0, T ] → BV(Ω;M3×3

D,sym) ,
Hp
skew : [0, T ] → L1(Ω;M3×3

skew) ,

• Energy balance:

E(t) + VH(Hp; 0, t) = E(0) +
∫︂ t

0

∫︂
Ω
CHe

sym(τ) : Eẇ(τ) dxdτ

−
∫︂ t

0
⟨L̇(τ), u(τ)⟩ dτ −

∫︂ t

0
⟨L(τ), ẇ(τ)⟩ dτ ∀ t ∈ [0, T ] , (3.57)

where
E(t) := Ψ1(He

sym(t)) + Ψ2(curl(Hp(t))) − ⟨L(t), u(t)⟩ . (3.58)

Remark 3.2.1. The assumption He(t) ∈ L
3
2 (Ω;M3×3) for every t ∈ [0, T ]

is non-restrictive. Indeed, by the admissibility (3.55) and Proposition 3.2.1 it



follows
He
skew(t) = ∇u−He

sym −Hp ∈ L
3
2 (Ω;M3×3

skew) .

Moreover, Hp
skew has bounded variation with values in the spaces L1(Ω;M3×3

skew)
or Mb(Ω;M3×3

skew), equivalently.
To make sense of the energy balance (3.57), measurability of u and He

sym

as maps from [0, T ] into L
3
2 (Ω;R3) and L2(Ω;M3×3

sym), respectively, is needed.
We now prove that admissibility, global stability, and the bounded variation of
Hp
sym and Hp

skew are sufficient to guarantee it.
Lemma 3.2.1. Let

t ↦→ (u(t), He(t), Hp(t))

be a map such that admissibility (3.55) and global stability (3.56) hold. Then
for every t ∈ [0, T ] and for every (v, e, p) ∈ A(0)⃓⃓⃓⃓∫︂

Ω
CHe

sym(t) : esym dx+ µL2
∫︂

Ω
curl(Hp(t)) : curl(p) dx− ⟨L(t), v⟩

⃓⃓⃓⃓
≤ H(p) .

Proof. Let ε ∈ R and (v, e, p) ∈ A(0). Let t ∈ [0, T ]. The triplet

(u(t) + εv,He(t) + εe,Hp(t) + εp)

is admissible for the boundary value w(t). By the global stability condition
(3.56) we have

Ψ1(He
sym(t)) + Ψ2(curl(Hp(t))) − ⟨L(t), u(t)⟩ ≤ Ψ1(He

sym(t) + εesym)
+ Ψ2(curl(Hp(t)) + ε curl(p)) − ⟨L(t), u(t) + εv⟩ + H(εp) . (3.59)

From (3.59) we deduce that

ε2Ψ1(esym) + ε2Ψ2(curl(p)) + ε

∫︂
Ω
CHe

sym(t) : esym dx

+ εµL2
∫︂

Ω
curl(Hp(t)) : curl(p) dx− ε⟨L(t), v⟩ + H(εp) ≥ 0 . (3.60)

By the positive homogeneity of H, dividing by ε > 0 and letting ε → 0+ in
(3.60), we obtain∫︂

Ω
CHe

sym(t) : esym dx+µL2
∫︂

Ω
curl(Hp(t)) : curl(p) dx− ⟨L(t), v⟩ +H(p) ≥ 0 .

If instead we consider ε < 0 and let ε → 0−, then∫︂
Ω
CHe

sym(t) : esym dx+µL2
∫︂

Ω
curl(Hp(t)) : curl(p) dx− ⟨L(t), v⟩ −H(p) ≤ 0 .

The thesis follows by combining the last two equations.

Proposition 3.2.7. Let

t ↦→ (u(t), He(t), Hp(t))



be a map such that admissibility (3.55) and global stability (3.56) hold. Then
there exists C > 0 such that for every t1, t2 ∈ [0, T ]

∥He
sym(t2) −He

sym(t1)∥2
L2 + ∥ curl(Hp(t2)) − curl(Hp(t1))∥2

L2

≤ C
[︂
∥Hp

sym(t2) −Hp
sym(t1)∥BV + ∥Hp

skew(t2) −Hp
skew(t1)∥L1

+ ∥L(t2) − L(t1)∥2
W−1,3 + ∥w(t2) − w(t1)∥2

H1

]︂
. (3.61)

Proof. The triplet (v, e, p) defined by

v = u(t2) − u(t1) − (w(t2) − w(t1)) ,
e = He(t2) −He(t1) − (∇w(t2) − ∇w(t1)) ,
p = Hp(t2) −Hp(t1) ,

is admissible for the zero boundary value. Therefore, by Lemma 3.2.1 we have∫︂
Ω
CHe

sym(t) : (He
sym(t2) −He

sym(t1)) dx

+ µL2
∫︂

Ω
curl(Hp(t)) : (curl(Hp(t2)) − curl(Hp(t1))) dx

≤ H(Hp(t2) −Hp(t1)) +
∫︂

Ω
CHe

sym(t) : (Ew(t2) − Ew(t1)) dx

+ ⟨L(t), u(t2) − u(t1) − (w(t2) − w(t1))⟩ ∀ t ∈ [0, T ] . (3.62)

Using the same argument with the triplet (−v,−e,−p), we obtain∫︂
Ω
CHe

sym(t) : (He
sym(t1) −He

sym(t2)) dx

+ µL2
∫︂

Ω
curl(Hp(t)) : (curl(Hp(t1)) − curl(Hp(t2))) dx

≤ H(Hp(t2) −Hp(t1)) +
∫︂

Ω
CHe

sym(t) : (Ew(t1) − Ew(t2)) dx

+ ⟨L(t), u(t1) − u(t2) − (w(t1) − w(t2))⟩ ∀ t ∈ [0, T ] . (3.63)

Combining (3.62) with t = t2 and (3.63) with t = t1 we deduce that

2Ψ1(He
sym(t2) −He

sym(t1)) + 2Ψ2(curl(Hp(t2)) − curl(Hp(t1)))

≤ 2H(Hp(t2) −Hp(t1)) +
∫︂

Ω
C(He

sym(t2) −He
sym(t1)) : (Ew(t2) − Ew(t1)) dx

+ ⟨L(t2) − L(t1), u(t2) − u(t1) − (w(t2) − w(t1))⟩ . (3.64)

Note that by definition of H there exists C > 0 such that

2H(Hp(t2) −Hp(t1)) ≤ C∥Hp
sym(t2) −Hp

sym(t1)∥BV
+ C∥Hp

skew(t2) −Hp
skew(t1)∥L1 . (3.65)

By the Hölder inequality, the coercivity properties (3.44)-(3.45), (3.64), and



(3.65) we obtain

αC∥He
sym(t2) −He

sym(t1)∥2
L2 + µL2∥ curl(Hp(t2)) − curl(Hp(t1))∥2

L2

≤ C∥Hp
sym(t2) −Hp

sym(t1)∥BV + C∥Hp
skew(t2) −Hp

skew(t1)∥Mb

+ βC∥He
sym(t2) −He

sym(t1)∥L2∥w(t2) − w(t1)∥H1

+ ∥L(t2) − L(t1)∥W−1,3∥u(t2) − u(t1)∥
W 1, 3

2

+ ∥L(t2) − L(t1)∥W−1,3∥w(t2) − w(t1)∥
W 1, 3

2
. (3.66)

We now focus on the term involving u. By Theorem 2.2.2 and Theorem 2.2.4
we deduce that there exists C ′ > 0 such that

∥u(t2) − u(t1)∥
W 1, 3

2
≤ C ′∥He

sym(t2) −He
sym(t1)∥L2

+ C ′∥Hp
sym(t2) −Hp

sym(t1)∥BV + C ′∥w(t2) − w(t1)∥H1 . (3.67)

Note that, since L is absolutely continuous, we have

sup
t∈[0,T ]

∥L(t)∥W−1,3 < +∞ . (3.68)

Combining (3.66)-(3.68) we have shown that there exists a constant C > 0 such
that

∥He
sym(t2) −He

sym(t1)∥2
L2 + ∥ curl(Hp(t2)) − curl(Hp(t1))∥2

L2

≤ C∥Hp
sym(t2) −Hp

sym(t1)∥BV + C∥Hp
skew(t2) −Hp

skew(t1)∥L1

+ C∥He
sym(t2) −He

sym(t1)∥L2∥w(t2) − w(t1)∥H1

+ C∥He
sym(t2) −He

sym(t1)∥L2∥L(t2) − L(t1)∥W−1,3

+ C∥L(t2) − L(t1)∥W−1,3∥w(t2) − w(t1)∥H1 . (3.69)

Therefore, by the Cauchy inequality, up to changing the constant C, we deduce
(3.61)

Suppose that a map

t ↦→ (u(t), He(t), Hp(t))

satisfies admissibility (3.55) and global stability (3.56). Moreover, assume that
the maps

Hp
sym : [0, T ] → BV(Ω;M3×3

D,sym) ,
Hp
skew : [0, T ] → L1(Ω;M3×3

skew) ,

have bounded variation. Then Hp
sym and Hp

skew are continuous almost ev-
erywhere. Let t ∈ [0, T ] be a point of continuity for Hp

sym and Hp
skew. By

Proposition 3.2.7, t is a point of continuity for the map

He
sym : [0, T ] → L2(Ω;M3×3

sym) .



Therefore, by Theorem 2.2.2 and Theorem 2.2.4 t is also a point of continuity
for

u : [0, T ] → W 1, 3
2 (Ω;R3) .

Hence u and He
sym are measurable as functions on [0, T ] with values in the

corresponding spaces.
The next chapter will be devoted to proving the existence of an energetic

solution to the Gurtin model.



Chapter 4

Existence of an energetic
solution

In this chapter we will show the existence of an energetic solution to the Gurtin
model. We will construct piecewise-constant-in-time approximate solutions by
discretizing the interval [0, T ] and by solving, at each discrete time, a mini-
mization problem able to enforce the global stability. Then we will show the
convergence of such approximated solutions to a proper energetic solution. The
chapter is organized as follows: in the first section we discuss the solvability of
the incremental minimization problems; in the second section we will construct
the approximate solutions and investigate their properties; in the last section we
will pass to the limit in the discretization parameter and exhibit the existence
of an energetic solution to the Gurtin model.

4.1 The minimization problem

To simplify the notation we will suppose, throughout this section, to have fixed
a time t ∈ [0, T ] and we will write f, g, ρ,L, and w instead of f(t), g(t), ρ(t),L(t),
and w(t), respectively. The objective of this section is to show the existence of
a solution to the following minimization problem:

min
(v,e,p)∈A(w)

{Ψ1(esym) + Ψ2(curl(p)) + H(p− p0) − ⟨L, v⟩} , (4.1)

where p0 is a given admissible plastic strain. To achieve this result we will use
the direct method of the Calculus of Variations. We will take a minimizing
sequence and show that is bounded in the correct spaces (for this step the safe-
load condition will be crucial). Then we will extract a convergent subsequence
and show that the limit is a solution to the minimization problem, owing to
the lower semicontinuity of the functionals involved. We start to pave the way
with some preliminary results.

Lemma 4.1.1. Let (Hp
n)n∈N be a sequence of plastic strains such that:

sup
n∈N

∥ curlHp
n∥L2 ≤ C ,

39



Hp
n,sym

∗
⇀ Hp

sym in BV(Ω;M3×3
D,sym) ,

Hp
n,skew

∗
⇀ Hp

skew in Mb(Ω;M3×3
skew) .

Then curlHp ∈ L2(Ω;M3×3) and curlHp
n ⇀ curlHp in L2(Ω;M3×3), where

Hp := Hp
sym +Hp

skew.

Proof. Since L2(Ω;M3×3) is reflexive, there is a subsequence (Hp
nk

)k∈N and a
function R ∈ L2(Ω;M3×3) such that curlHp

nk
⇀ R in L2(Ω;M3×3). Then, for

every test function g ∈ D(Ω;M3×3) we have

⟨R, g⟩ = lim
k→∞

⟨curlHp
nk
, g⟩ = − lim

k→∞
⟨Hp

nk
, curl(gT )T ⟩ = −⟨Hp, curl(gT )T ⟩

= ⟨curlHp, g⟩ .

By density we deduce that curlHp = R, so that curlHp ∈ L2(Ω;M3×3). To
conclude the proof it is sufficient to show that the extraction of a subsequence
is not needed. Let g ∈ L2(Ω;M3×3) and ε > 0. By density there exists
f ∈ D(Ω;M3×3) such that ∥f − g∥L2 ≤ ε. Since by assumption (curl(Hp

n))n∈N
is bounded in L2(Ω;M3×3) and curl(Hp) ∈ L2(Ω;M3×3), we have

|⟨curlHp
n − curlHp, g⟩| ≤ |⟨curlHp

n − curlHp, g − f⟩| + |⟨curlHp
n − curlHp, f⟩|

≤ ∥ curlHp
n − curlHp∥L2∥g − f∥L2 + |⟨curlHp

n − curlHp, f⟩|
≤ εC ′ + |⟨Hp

n −Hp, curl(fT )T ⟩| .

Passing to the limit we obtain

lim
n→∞

|⟨curlHp
n − curlHp, g⟩| ≤ εC ′

and this concludes the proof, since ε and g are arbitrary.

Proposition 4.1.1. Let (wn) ⊂ H1(Ω;R3) be a sequence of boundary values
such that wn ⇀ w in H1(Ω;R3). Let (un, He

n, H
p
n) be a sequence of admissible

triplets such that

(un, He
n, H

p
n) ∈ A(wn) ∀ n ∈ N

un ⇀ u in W 1, 3
2 (Ω;R3) ,

He
n,sym ⇀ He

sym in L2(Ω;M3×3
sym) ,

curlHp
n ⇀ R in L2(Ω;M3×3) ,

Hp
n,sym

∗
⇀ Hp

sym in BV(Ω;M3×3
D,sym) ,

Hp
n,skew

∗
⇀ Hp

skew in Mb(Ω;M3×3
skew) .

Then, defining

Hp := Hp
sym +Hp

skew , (4.2)
He
skew := ∇u−Hp −He

sym , (4.3)
He := He

sym +He
skew , (4.4)



the triplet (u,He, Hp) is admissible for the boundary value w and R = curlHp.

Proof. Note that properties (3.29) and (3.31) in the definition of A(w) are
automatically granted by the supposed convergences. In view of Lemma 4.1.1
we have R = curlHp. Finally, by (4.3), condition (3.30) holds true for the
triplet (u,He, Hp).

The previous result is particularly important since it guarantees the closure
of the set A(w) with respect to the natural convergences. Given a sequence of
admissible triplets (un, He

n, H
p
n) such that all the hypotheses of Proposition 4.1.1

hold true, we will usually denote its limit by (u,He, Hp) implying that Hp and
He are given by (4.2) and (4.4).

We now show a few results for the functional H, that will be used to prove
some coercivity property. First of all, we note that

((A,B), (C,D))H = Asym : Csym + χAskew : Cskew + h2B : D

is an inner product on the vector space M3×3 ×M3×3×3. The induced norm is

|(A,B)|H =
√︂

|Asym|2 + χ|Askew|2 + h2|B|2 (4.5)

for (A,B) ∈ M3×3 ×M3×3×3. We define

|(A,B)|∗H =
√︄

|Asym|2 + 1
χ

|Askew|2 + 1
h2 |B|2 (4.6)

for (A,B) ∈ M3×3 × M3×3×3. The next proposition states that |(·, ·)|∗H and
|(·, ·)|H are dual norms.

Proposition 4.1.2. The following property holds:

|(A,B)|H = sup
|(C,D)|∗H≤1

{A : C +B : D} (4.7)

for every (A,B) ∈ M3×3 ×M3×3×3.

Proof. Let (A,B) ∈ M3×3 ×M3×3×3 and let (C,D) ∈ M3×3 ×M3×3×3 be such
that |(C,D)|∗H ≤ 1. From the Cauchy-Schwarz inequality it follows that

A : C +B : D = Asym : Csym +Askew : Cskew +B : D

= Asym : Csym + χAskew :
(︃ 1
χ
Cskew

)︃
+ h2B :

(︃ 1
h2D

)︃
≤ |(A,B)|H

⃓⃓⃓⃓(︃
Csym + 1

χ
Cskew,

1
h2D

)︃⃓⃓⃓⃓
H

= |(A,B)|H|(C,D)|∗H ≤ |(A,B)|H .

Now let (C,D) := 1
|(A,B)|H

(Asym + χAskew, h
2B). Clearly,

|(C,D)|∗H = 1
|(A,B)|H

|(Asym + χAskew, h
2B)|∗H = |(A,B)|H

|(A,B)|H
= 1 .



By the definition (4.5) of |(·, ·)|H, we have

A : C +B : D = Asym : Csym +Askew : Cskew +B : D

= 1
|(A,B)|H

(Asym : Asym + χAskew : Askew + h2B : B) = |(A,B)|H .

With similar arguments one can show that |(·, ·)|∗H is the dual norm of
|(·, ·)|H, that is

|(A,B)|∗H = sup
|(C,D)|H≤1

{A : C +B : D} (4.8)

for every (A,B) ∈ M3×3 ×M3×3×3.
We now extend these results to suitable functional spaces. Let us define the

norms
∥(F,G)∥H =

∫︂
Ω

|(F (x), G(x))|H dx (4.9)

for (F,G) ∈ L1(Ω;M3×3) × L1(Ω;M3×3×3) and

∥(F,G)∥∗
H = ess sup

x∈Ω
|(F (x), G(x))|∗H (4.10)

for (F,G) ∈ L∞(Ω;M3×3) × L∞(Ω;M3×3×3). One can show that

∥(F,G)∥H = sup
∥(L,M)∥∗

H≤1

∫︂
Ω

(F : L+G : M) dx (4.11)

for every (F,G) ∈ L1(Ω;M3×3) × L1(Ω;M3×3×3) and

∥(L,M)∥∗
H = sup

∥(F,G)∥H≤1

∫︂
Ω

(F : L+G : M) dx (4.12)

for every (L,M) ∈ L∞(Ω;M3×3)×L∞(Ω;M3×3×3). These results will be useful
in the next proposition since we have, by definition

H1(Hp) = Y0∥(Hp,∇Hp
sym)∥H .

Proposition 4.1.3. There are two constants α, β > 0 such that

H(Hp) −
∫︂

Ω
ρD : Hp

sym dx ≥ α∥Hp
sym∥BV + β∥Hp

skew∥L1 (4.13)

for every admissible plastic strain Hp. In addition, we can choose the following
values for α and β:

α = min

⎧⎨⎩M2 ,
h

2

√︄
M(4Y0 −M)

2 , hY0

⎫⎬⎭ , (4.14)



β = 1
2

√︄
χM(4Y0 −M)

2 . (4.15)

Proof. Let 0 < M < Y0 be the constant given in (3.50) and let us define the
sets

K :=
{︂

(τ1, τ2, τ3) ∈ L∞(Ω;M3×3
D,sym) × L∞(Ω;M3×3

skew) × L∞(Ω;M3×3×3) :

∥(τ1 + τ2, τ3)∥∗
H ≤ Y0

}︂
,

˜︁K =

⎧⎨⎩(τ1, τ2, τ3) ∈ L∞(Ω;M3×3
D,sym) × L∞(Ω;M3×3

skew) × L∞(Ω;M3×3×3) :

∥τ1∥L∞ ≤ Y0 − M

2 , ∥τ2∥L∞ ≤ 1
2

√︄
χM(4Y0 −M)

2 , ∥τ3∥L∞ ≤ h

2

√︄
M(4Y0 −M)

2

⎫⎬⎭ .

By (4.11) we have that, for every (τ1, τ2, τ3) ∈ K,

H1(Hp) −
∫︂

Ω
ρD : Hp

sym dx ≥∫︂
Ω

[(τ1 − ρD) : Hp
sym + τ2 : Hp

skew + τ3 : ∇aHp
sym] dx . (4.16)

Note that ˜︁K ⊂ K hence (4.16) holds true for every (τ1, τ2, τ3) ∈ ˜︁K. Any function
f ∈ L∞(Ω,M3×3

D ) such that ∥f∥L∞ ≤ M

2 can be written in the form τ1 − ρD

for a suitable τ1 ∈ L∞(Ω;M3×3
D,sym) with ∥τ1∥L∞ ≤ Y0 −M

2 . Indeed, assumption
(3.50) implies that

|f + ρD| ≤ Y0 − M

2 a.e in Ω ∀ f ∈ L∞(Ω,M3×3
D ) such that ∥f∥L∞ ≤ M

2 .

Therefore, passing to the supremum on ˜︁K in (4.16) we find that

Ha(Hp) −
∫︂

Ω
ρD : Hp

sym dx ≥ M

2 ∥Hp
sym∥L1

+ 1
2

√︄
χM(4Y0 −M)

2 ∥Hp
skew∥L1 + h

2

√︄
M(4Y0 −M)

2 ∥∇aHp
sym∥L1 . (4.17)

Adding to (4.17) the remaining term H2(Hp), the proof is complete.

Remark 4.1.1. Proposition 4.1.3 gives a coercivity estimate with respect to
the norms ∥ · ∥BV and ∥ · ∥L1 . In the proof we have also shown that

H(Hp) −
∫︂

Ω
ρD : Hp

sym dx ≥ M

2 ∥Hp
sym∥L1 .

This estimate will be relevant in Chapter 6 when we will study the asymptotic



behavior of solutions as h, L → 0.

We are now ready to prove the main result of this section.

Theorem 4.1.1. Problem (4.1) has a solution.

Proof. Let (un, He
n, H

p
n) be a minimizing sequence for problem (4.1). Note that

(w,∇w, 0) ∈ A(w), so A(w) ̸= ∅. Hence, there exists a constant C > 0 such
that

Ψ1(He
n,sym) + Ψ2(curl(Hp

n)) + H(Hp
n − p0) − ⟨L, un⟩ ≤ C ∀ n ∈ N .

By Proposition 3.2.5 we obtain, for every n ∈ N,

Ψ1(He
n,sym) + Ψ2(curl(Hp

n)) + H(Hp
n − p0) −

∫︂
Ω
ρ : He

n,sym dx

−
∫︂

Ω
ρD : Hp

n,sym dx ≤ C + ⟨L(t), w⟩ −
∫︂

Ω
ρ(t) : Ew dx . (4.18)

By (3.44) and the Hölder inequality we infer

Ψ1(He
n,sym) −

∫︂
Ω
ρ : He

n,sym dx ≥ αC
2 ∥He

n,sym∥2
L2 − ∥ρ∥L2∥He

n,sym∥L2

≥ ∥He
n,sym∥L2 − (∥ρ∥L2 + 1)2

2αC
. (4.19)

Combining (4.18) and (4.19) with (4.13) we deduce that there exists C > 0,
independent of n, such that

∥He
n,sym∥L2 + ∥ curl(Hp

n)∥L2 + ∥Hp
n,sym∥BV + ∥Hp

n,skew∥L1 ≤ C ∀ n ∈ N .

By the Korn inequality (2.5) we know that for some constant C ′ > 0

∥∇un∥
L

3
2

≤ C ′ .

Applying the Poincaré inequality (2.8), the norm ∥un∥
L

3
2

is uniformly bounded
with respect to n. Hence, up to a subsequence, we have:

un ⇀ u in W 1, 3
2 (Ω;R3) ,

He
n,sym ⇀ He

sym in L2(Ω;M3×3
sym) ,

curlHp
n ⇀ R in L2(Ω;M3×3) ,

Hp
n,sym

∗
⇀ Hp

sym in BV(Ω;M3×3
D,sym) ,

Hp
n,skew

∗
⇀ Hp

skew in Mb(Ω;M3×3
skew) .

By applying Proposition 4.1.1 we infer that R = curlHp and (u,He, Hp) ∈
A(w). By Proposition 3.2.2 it holds

H(Hp − p0) ≤ lim inf
n→∞

H(Hp
n − p0) . (4.20)



Moreover, by the continuity and convexity of Ψ1,Ψ2 and L we obtain

Ψ1(He
sym) + Ψ2(curl(Hp)) + ⟨L, u⟩

≤ lim inf
n→∞

[Ψ1(He
sym,n) + Ψ2(curl(Hp

n)) + ⟨L, un⟩] . (4.21)

Combining (4.20) and (4.21) we deduce that (u,He, Hp) is a solution for (4.1).
This concludes the proof.

4.2 Discretized evolutions

In this section we will discretize the time variable to construct an approximated
energetic solution for the Gurtin model. This is a well-established approach to
solve rate-independent problems (see [17]). At the end of the section we will
prove the global stability condition (3.56) and a discrete energy inequality (3.57)
for such discretized solution.

Let us introduce some useful notation. For the rest of the chapter we will
denote by k ∈ N the discretization parameter and write

tik := i

k
T ∀ i = 0, . . . , k , k ∈ N .

Abusing this notation we will write [tkk, t
k+1
k ) to denote the degenerate interval

[T, T ].
We will use the subscript k to denote the right-continuous piecewise constant

interpolation of a function defined at the discrete times tik. As an example
consider

wk(t) = w(tik) if t ∈ [tik, ti+1
k ) .

We fix as initial condition an admissible triplet (u0, H
e
0 , H

p
0 ) for the bound-

ary value w(0) and we assume that, for this triplet, the global stability condition
(3.56) holds true, that is,

Ψ1(He
0,sym) + Ψ2(curl(Hp

0 )) − ⟨L(0), u0) ≤ Ψ1(esym) + Ψ2(curl(p))
−⟨L(0), v⟩ + H(p−Hp

0 ) ∀ (v, e, p) ∈ A(w(0)) . (4.22)

We construct an approximate energetic solution for the Gurtin model in-
ductively. Let

(u0,k, H
e
0,k, H

p
0,k) := (u0, H

e
0 , H

p
0 ) ∀ k ∈ N .

For every i = 1, . . . , k let (ui,k, He
i,k, H

p
i,k) ∈ A(w(tik)) be a solution to problem

(4.1) with p0 = Hp
i−1,k. Now let us define uk, H

e
k and Hp

k as the piecewise
constant interpolants given by

uk(t) := ui,k ∀ t ∈ [tik, ti+1
k ) ,

He
k(t) := He

i,k ∀ t ∈ [tik, ti+1
k ) ,

Hp
k(t) := Hp

i,k ∀ t ∈ [tik, ti+1
k ) ,



for every i ∈ {0, . . . , k}. In a similar fashion we define

Ek(t) := Ψ1(He
k,sym(t)) + Ψ2(curl(Hp

k(t))) − ⟨Lk(t), uk(t)⟩ ,

where Lk(t) is defined as in (3.27) with f = fk and g = gk. By construction we
have

(uk(t), He
k(t), Hp

k(t)) ∈ A(wk(t)) ∀ t ∈ [0, T ] ∀ k ∈ N . (4.23)

We are ready to prove the main results of the section.

Proposition 4.2.1. The following global stability condition holds true: for
every t ∈ [0, T ] and every k ∈ N

Ek(t) ≤ Ψ1(esym) + Ψ2(curl(p)) − ⟨Lk(t), v⟩ + H(p−Hp
k(t))

∀ (v, e, p) ∈ A(wk(t)) . (4.24)

Proof. If t ∈ [0, t1k), the claim is true by assumption (4.22). Let i ∈ {1, . . . , k}
and t ∈ [tik, t

i+1
k ). By definition of the approximate solutions we have

Ψ1(He
k,sym(t)) + Ψ2(curl(Hp

k(t))) − ⟨Lk(t), uk(t)⟩ + H(Hp
k(t) −Hp

k(ti−1
k ))

≤ Ψ1(esym) + Ψ2(curl(p)) − ⟨Lk(t), v⟩ + H(p−Hp
k(ti−1

k ))
∀ (v, e, p) ∈ A(wk(t)) .

By the subadditivity of H the last term can be estimated in the following way:

H(p−Hp
k(ti−1

k )) ≤ H(p−Hp
k(t)) + H(Hp

k(t) −Hp
k(ti−1

k )) ,

concluding the proof.

Proposition 4.2.2. The following discrete energy inequality holds: for every
k ∈ N and j ∈ {0, . . . , k}

Ek(t) + VH(Hp
k ; 0, t) ≤ E(0) +

∫︂ tj
k

0

∫︂
Ω
CHe

k,sym(τ) : Eẇ(τ) dxdτ

−
∫︂ tj

k

0
⟨L̇(τ), uk(τ)⟩ dτ −

∫︂ tj
k

0
⟨Lk(τ), ẇ(τ)⟩ dτ + εk ∀ t ∈ [tjk, t

j+1
k ) , (4.25)

where εk → 0 as k → +∞.

Proof. The claim is trivially true if t ∈ [0, t1k). Let us suppose j ∈ {1, . . . , k}
and t ∈ [tjk, t

j+1
k ). Let i ∈ {1, . . . , j}. Note that the triplet

(uk(ti−1
k ) + wk(tik) − wk(ti−1

k ), He
k(ti−1

k ) + ∇wk(tik) − ∇wk(ti−1
k ), Hp

k(ti−1
k ))

is admissible for the boundary value wk(tik). Hence, by definition of the approx-
imate solutions, we have

Ψ1(He
k,sym(tik)) + Ψ2(curl(Hp

k(tik))) − ⟨Lk(tik), uk(tik)⟩
+ H(Hp

k(tik) −Hp
k(ti−1

k )) ≤ Ψ1(He
k,sym(ti−1

k ) + Ewk(tik) − Ewk(ti−1
k ))



+ Ψ2(curl(Hp
k(ti−1

k ))) − ⟨Lk(tik), uk(ti−1
k ) + wk(tik) − wk(ti−1

k )⟩ . (4.26)

We focus now on the right-hand side of (4.26) analyzing one term at a time.
The first one can be decomposed as follows:

Ψ1(He
k,sym(ti−1

k ) + Ewk(tik) − Ewk(ti−1
k )) = Ψ1(He

k,sym(ti−1
k )) (4.27)

+ Ψ1(Ewk(tik) − Ewk(ti−1
k )) +

∫︂
Ω
CHe

k,sym(ti−1
k ) : (Ewk(tik) − Ewk(ti−1

k )) dx .

Moreover, the last term in (4.27) can be rewritten as follows:∫︂
Ω
CHe

k,sym(ti−1
k ) : (Ewk(tik) − Ewk(ti−1

k )) dx

=
∫︂

Ω

∫︂ tik

ti−1
k

d

dτ
[CHe

k,sym(ti−1
k ) : Ew(τ)] dτdx (4.28)

=
∫︂

Ω

∫︂ tik

ti−1
k

CHe
k,sym(ti−1

k ) : Eẇ(τ) dτdx =
∫︂ tik

ti−1
k

∫︂
Ω
CHe

k,sym(τ) : Eẇ(τ) dτdx .

The last term at the right-hand side of (4.26) can be manipulated to get

⟨Lk(tik), uk(ti−1
k ) + wk(tik) − wk(ti−1

k )⟩
= ⟨Lk(tik) − Lk(ti−1

k ) + Lk(ti−1
k ), uk(ti−1

k ) + wk(tik) − wk(ti−1
k )⟩

= ⟨Lk(ti−1
k ), uk(ti−1

k )⟩ + ⟨Lk(tik) − Lk(ti−1
k ), wk(tik) − wk(ti−1

k )⟩
+ ⟨Lk(ti−1

k ), wk(tik) − wk(ti−1
k )⟩ + ⟨Lk(tik) − Lk(ti−1

k ), uk(ti−1
k )⟩ . (4.29)

The last two terms in (4.29) can be rewritten in integral form:

⟨Lk(ti−1
k ), wk(tik) − wk(ti−1

k )⟩ =
∫︂ tik

ti−1
k

⟨Lk(ti−1
k ), ẇ(t)⟩ dτ

=
∫︂ tik

ti−1
k

⟨Lk(τ), ẇ(τ)⟩ dτ , (4.30)

⟨Lk(tik) − Lk(ti−1
k ), uk(ti−1

k )⟩ =
∫︂ tik

ti−1
k

⟨L̇(τ), uk(ti−1
k )⟩ dτ

=
∫︂ tik

ti−1
k

⟨L̇(τ), uk(τ)⟩ dτ . (4.31)

Lastly, let us define

δk,i :=Ψ1(Ewk(tik) − Ewk(ti−1
k ))

+ |⟨Lk(tik) − Lk(ti−1
k ), wk(tik) − wk(ti−1

k )⟩| . (4.32)

Combining the identities (4.27)-(4.31) and definition (4.32) into inequality (4.26)



we conclude that

Ek(tik) + H(Hp
k(tik) −Hp

k(ti−1
k )) ≤ Ek(ti−1

k )

+
∫︂ tik

ti−1
k

∫︂
Ω
CHe

k,sym(τ) : Eẇ(τ) dτdx−
∫︂ tik

ti−1
k

⟨Lk(τ), ẇ(t)⟩ dτ

−
∫︂ tik

ti−1
k

⟨L̇(τ), uk(τ)⟩ dτ + δk,i . (4.33)

Summing up (4.33) for i = 1, . . . , j we infer

Ek(tjk) + VH(Hp
k ; 0, t) ≤ Ek(0) +

∫︂ tj
k

0

∫︂
Ω
CHe

k,sym(τ) : Eẇk(τ) dτdx

−
∫︂ tj

k

0
⟨Lk(τ), ẇk(τ)⟩ dτ −

∫︂ tj
k

0
⟨L̇k(τ), uk(τ)⟩ dτ +

k∑︂
i=1

δk,i .

Note that by definition we have Ek(t) = Ek(tjk) and Ek(0) = E(0). To conclude

the proof we just need to prove that εk :=
k∑︁
i=1

δk,i → 0, as k → ∞. First of all,

by the Jensen inequality and the coercivity estimate (3.44), we deduce that

Ψ1(Ewk(tik) − Ewk(ti−1
k )) = Ψ1

(︄∫︂ tik

ti−1
k

Eẇ(τ) dτ
)︄

≤βC
2

∫︂
Ω

⃓⃓⃓⃓
⃓
∫︂ tik

ti−1
k

Eẇ(τ) dτ
⃓⃓⃓⃓
⃓
2

dx = βC
2

∫︂
Ω

T 2

k2

⃓⃓⃓⃓
⃓ kT
∫︂ tik

ti−1
k

Eẇ(τ) dτ
⃓⃓⃓⃓
⃓
2

dx

≤βCT

2k

∫︂ tik

ti−1
k

∥Eẇ(τ)∥2
L2 dτ . (4.34)

Since L(t) is a linear and continuous operator for every t ∈ [0, T ] and, in
addition, Lk(tik) = L(tik) for every i = 1, . . . , k, we infer that

|⟨Lk(tik) − Lk(ti−1
k ), wk(tik) − wk(ti−1

k )⟩| =
⃓⃓⃓⃓
⃓⟨L(tik) − L(ti−1

k ),
∫︂ tik

ti−1
k

ẇ(τ) dτ⟩
⃓⃓⃓⃓
⃓

≤∥L(tik) − L(ti−1
k )∥W−1,3

⃦⃦⃦⃦
⃦
∫︂ tik

ti−1
k

ẇ(τ) dτ
⃦⃦⃦⃦
⃦
W 1, 3

2

≤ sup
i=1,...,k

∥L(tik) − L(ti−1
k )∥W−1,3

∫︂ tik

ti−1
k

∥ẇ(τ)∥
W 1, 3

2
dτ . (4.35)

Combining (4.34) and (4.35) we deduce that

εk ≤ βCT

2k

∫︂ T

0
∥Eẇ(τ)∥2

L2 dτ

+ sup
i=1,...,k

∥L(tik) − L(ti−1
k )∥W−1,3

∫︂ T

0
∥ẇ(τ)∥

W 1, 3
2
dτ .



Finally, recalling that L is absolutely continuous with respect to time with
values in the space W−1,3(Ω;R3), we conclude that εk → 0 as k → ∞.

4.3 The existence result
To pass to the limit in the global stability condition (4.24) and the discrete
energy inequality (4.25) we need to establish some compactness for the approx-
imate solutions. To this aim, in the next proposition we prove some uniform
bound with respect to the discretization parameter k of the approximate solu-
tions.

Proposition 4.3.1. There are two constants C1, C2 > 0, depending only on
T, αC, βC, Ew,Eẇ, ρ, ρ̇, and the initial triplet (u0, H

e
0 , H

p
0 ), such that for every

k ∈ N and t ∈ [0, T ] the following estimates hold:

∥He
k,sym(t)∥L2 ≤ C1 , (4.36)

µL2

2 ∥ curl(Hp
k(t))∥2

L2 + αV(Hp
k,sym; 0, t) + βV(Hp

k,skew; 0, t) ≤ C2 , (4.37)

where α and β are the constants in (4.14) and (4.15). Moreover, there exists
a constant C3 > 0, depending only on T, αC, βC, Ew,Eẇ, ρ, ρ̇, CP ,K, and the
initial triplet (u0, H

e
0 , H

p
0 ), such that

∥uk(t)∥
W 1, 3

2
≤ C3 + 1

α
C3 ∀ k ∈ N ∀ t ∈ [0, T ] . (4.38)

where CP and K are given in Theorem 2.2.2 and Theorem 2.2.4.

Proof. Let i ∈ {1, . . . , k}. We can rewrite (4.26) using identity (3.51) to deduce

Ψ1(He
k,sym(tik)) + Ψ2(curl(Hp

k(tik))) −
∫︂

Ω
ρ(tik) : He

k,sym(tik) dx

−
∫︂

Ω
ρD(tik) : Hp

k,sym(tik) dx+ H(Hp
k(tik) −Hp

k(ti−1
k ))

≤ Ψ1(He
k,sym(ti−1

k ) + Ewk(tik) − Ewk(ti−1
k )) + Ψ2(curl(Hp

k(ti−1
k )))

−
∫︂

Ω
ρ(tik) : (He

k,sym(ti−1
k ) + Ewk(tik) − Ewk(ti−1

k )) dx

−
∫︂

Ω
ρD(tik) : Hp

k,sym(ti−1
k ) dx . (4.39)

Let us define ˜︁δk,i := Ψ1(Ewk(tik) − Ewk(ti−1
k )) .

By (4.27), (4.28), and (4.39) we obtain

Ψ1(He
k,sym(tik)) −

∫︂
Ω
ρ(tik) : (He

k,sym(tik) − Ewk(tik)) dx

+ Ψ2(curl(Hp
k(tik))) + H(Hp

k(tik) −Hp
k(ti−1

k ))

−
∫︂

Ω
ρD(tik) : (Hp

k,sym(tik) −Hp
k,sym(ti−1

k )) dx ≤ Ψ1(He
k,sym(ti−1

k ))



−
∫︂

Ω
ρ(ti−1

k ) : (He
k,sym(ti−1

k ) − Ewk(ti−1
k )) dx+ Ψ2(curl(Hp

k(ti−1
k )))

−
∫︂

Ω
(ρ(tik) − ρ(ti−1

k )) : (He
k,sym(ti−1

k ) − Ewk(ti−1
k )) dx

+
∫︂ tik

ti−1
k

∫︂
Ω
CHe

k,sym(τ) : Eẇ(τ) dτdx+ ˜︁δk.i . (4.40)

Note that we can rewrite the second to last term as follows:∫︂
Ω

(ρ(tik) − ρ(ti−1
k )) : (He

k,sym(ti−1
k ) − Ewk(ti−1

k )) dx

=
∫︂ tik

ti−1
k

∫︂
Ω
ρ̇(τ) : (He

k,sym(τ) − Ewk(τ)) dxdτ . (4.41)

Let j ∈ {1, . . . , k}. Combining (4.40) and (4.41) and summing up for i = 1, . . . , j
we deduce

Ψ1(He
k,sym(tjk)) −

∫︂
Ω
ρ(tjk) : (He

k,sym(tjk) − Ewk(tjk)) dx

+ Ψ2(curl(Hp
k(tjk))) +

j∑︂
i=1

[︃
H(Hp

k(tik) −Hp
k(ti−1

k ))

−
∫︂

Ω
ρD(tik) : (Hp

k,sym(tik) −Hp
k,sym(ti−1

k )) dx
]︃

≤ Ψ1(He
0,sym)

−
∫︂

Ω
ρ(0) : (He

0,sym − Ew(0)) dx+ Ψ2(curl(Hp
0 ))

−
∫︂ tj

k

0

∫︂
Ω
ρ̇(τ) : (He

k,sym(τ) − Ewk(τ)) dxdτ

+
∫︂ tj

k

0

∫︂
Ω
CHe

k,sym(τ) : Eẇ(τ) dτdx+
k∑︂
i=1

˜︁δk.i . (4.42)

In the proof of Proposition 4.2.2 (see equation (4.34)) we have already shown
that ∑︁k

i=1
˜︁δk,i is bounded by a constant C > 0 that depends only on T, βC, and

Eẇ. Moreover, by Proposition 4.1.3 we have the lower bound

j∑︂
i=1

[︃
H(Hp

k(tik) −Hp
k(ti−1

k )) −
∫︂

Ω
ρD(tik) : (Hp

k,sym(tik) −Hp
k,sym(ti−1

k )) dx
]︃

≥
j∑︂
i=1

[︂
α∥Hp

k,sym(tik) −Hp
k,sym(ti−1

k )∥BV + β∥Hp
k,skew(tik) −Hp

k,skew(ti−1
k )∥L1

]︂
=αV(Hp

k,sym; 0, t) + βV(Hp
k,skew; 0, t) ∀ t ∈ [tjk, t

j+1
k ) . (4.43)

Combining (4.42) and (4.43) we infer that there exists a new constant C > 0,
depending only on T, βC, Eẇ, ρ, Ew, and the initial triplet (u0, H

e
0 , H

p
0 ), such

that

Ψ1(He
k,sym(t)) dx−

∫︂
Ω
ρ(tjk) : (He

k,sym(t) − Ew(tjk)) dx



+ Ψ2(curl(Hp
k(t))) + αV(Hp

k,sym; 0, t) + βV(Hp
k,skew; 0, t)

≤ C −
∫︂ tj

k

0

∫︂
Ω
ρ̇(τ) : (He

k,sym(τ) − Ewk(τ)) dxdτ

+
∫︂ tj

k

0

∫︂
Ω
CHe

k,sym(τ) : Eẇ(τ) dτdx ∀ t ∈ [tjk, t
j+1
k ) . (4.44)

Using the Hölder inequality and (3.44) we deduce from (4.44) that

αC
2 ∥He

k,sym(t)∥2
L2 − ∥ρ(tjk)∥L2∥He

k,sym(t) − Ew(tjk)∥L2

+µL2

2 ∥ curl(Hp(t))∥2
L2 + αV(Hp

k,sym; 0, t) + βV(Hp
k,skew; 0, t)

≤C +
∫︂ t

0
∥ρ̇(τ)∥L2∥He

k,sym(τ) − Ewk(τ)∥L2 dτ

+
∫︂ t

0
∥CHe

k,sym(τ)∥L2∥Eẇ(τ)∥L2 dτ ∀ t ∈ [tjk, t
j+1
k ) . (4.45)

Since the first term is quadratic, there exists a constant C ′ > 0, depending only
on αC, ρ, Ew, such that

αC
2 ∥He

k,sym(t)∥2
L2 − ∥ρ(tjk)∥L2∥He

k,sym(t) − Ew(tjk)∥L2

≥ C ′∥He
k,sym(t)∥2

L2 − C ′ (4.46)

We now focus on the terms that contain He
k,sym in (4.45). By (4.46) we obtain

∥He
k,sym(t)∥2

L2 ≤ C +C

∫︂ t

0
(∥ρ̇(τ)∥L2 +βC∥Eẇ(τ)∥L2)∥He

k,sym(τ)∥L2 dτ (4.47)

for every t ∈ [t1k, T ] where C > 0 is a new constant, depending only on
T, αC, βC, Eẇ, ρ, Ew and the initial triplet (u0, H

e
0 , H

p
0 ). Note that up to a

change of the constant C (but not of its dependence), (4.47) holds true also
for t ∈ [0, t1k). By the Lemma 5.3 in [15], since ρ̇ , Eẇ ∈ L1(0, T ;L2(Ω;M3×3

sym)),
(4.36) holds. By (4.36) and (4.45)-(4.46) claim (4.37) immediately follows. Ap-
plying Theorem 2.2.2 and Theorem 2.2.4 we obtain (4.38).

Remark 4.3.1. Proposition 4.3.1 provides some bounds for the approximate
solutions. The same property holds for any energetic solution to the Gurtin
model and it can be proved using the same arguments with some minor changes.
Moreover, following the same lines of the previous proof and applying Re-
mark 4.1.1, one can show that

M

2 V(Hp
sym; 0, t;L1) ≤ C2 ∀ t ∈ [0, T ] , (4.48)

where V(Hp
sym; 0, t;L1) is the variation on [0, t] of

Hp
sym : [0, T ] → L1(Ω;M3×3

D,sym) .



Finally, C1 and C2 have the following form:

Ci = C ′
i|ψ(He

0 , curl(Hp
0 ))| + C ′

i∥He
0,sym∥L2 + C ′

i , (4.49)

where C ′
1 and C ′

2 do not depend on the initial triplet. This remark will be
useful in Chapter 6 where we will need to exploit the exact dependence of the
estimates (4.36)-(4.38) on χ, h, L and the initial triplet.

We are finally in a position to prove the existence of a solution for the Gurtin
model.

Theorem 4.3.1. Let (u0, H
e
0 , H

p
0 ) ∈ A(w(0)) be an admissible triplet such that

(4.22) holds true. Then there exists an energetic solution for the Gurtin model
with initial datum (u0, H

e
0 , H

p
0 ).

Proof. Let t ↦→ (uk(t), He
k(t), Hp

k(t)) be an approximate solution, defined as
in the previous sections, starting from the initial value (u0, H

e
0 , H

p
0 ). We will

show in this proof that it is possible to pass to the limit in (4.24) and (4.25)
as k → ∞, at least along a subsequence, to obtain an energetic solution for the
Gurtin model. By Proposition 4.3.1, in view of Theorem 2.1.2, there exists a
subsequence (kn) and two maps with bounded variation

Hp
sym : [0, T ] → BV(Ω;M3×3

D,sym) ,
Hp
skew : [0, T ] → Mb(Ω;M3×3

skew) ,

such that for every t ∈ [0, T ]

Hp
kn,sym

(t) ∗
⇀ Hp

sym(t) in BV(Ω;M3×3
D,sym) , (4.50)

Hp
kn,skew

(t) ∗
⇀ Hp

skew(t) in Mb(Ω;M3×3
skew) . (4.51)

Let Hp(t) := Hp
sym(t)+Hp

skew(t). By Lemma 4.1.1 and (4.37), without extract-
ing a further subsequence, we have

curl(Hp
kn

(t)) ⇀ curl(Hp(t)) in L2(Ω;M3×3) ∀ t ∈ [0, T ] . (4.52)

Applying Proposition 4.3.1 once again we deduce that, for every t ∈ [0, T ],
there is a subsequence (knm(t)), which a priori depends on t, and there exist
maps u(t) ∈ W 1, 3

2 (Ω;R3) and He
sym(t) ∈ L2(Ω;M3×3

sym) such that

uknm(t)
(t) ⇀ u(t) in W 1, 3

2 (Ω;R3) , (4.53)

He
knm(t) ,sym

(t) ⇀ He
sym(t) in L2(Ω;M3×3

sym) . (4.54)

Since w is absolutely continuous, by (4.23) and Proposition 4.1.1 we have

(u(t), He(t), Hp(t)) ∈ A(w(t)) ∀ t ∈ [0, T ] . (4.55)

In particular, by Proposition 3.2.1 Hp
skew is absolutely continuous with respect

to the Lebesgue measure, thus it has bounded variation as a map with values



in L1(Ω;M3×3
skew). We first show the global stability condition (3.56) for the map

t ↦→ (u(t), He(t), Hp(t)) .

Let t ∈ [0, T ] and let (v, e, p) ∈ A(w(t)) be an admissible triplet. In order to
simplify the notation let h be any index of the subsequence knm(t) . By (4.23)
the triplet

(v − u(t) + uh(t), e−He(t) +He
h(t), p−Hp(t) +Hp

h(t))

is admissible for the boundary value wh(t). Hence we can apply the global
stability condition (4.24) to obtain

Ψ1(He
h,sym(t)) + Ψ2(curl(Hp

h(t))) − ⟨Lh(t), uh(t)⟩ ≤
Ψ1(esym −He

sym(t) +He
h,sym(t)) + Ψ2(curl(p−Hp(t) +Hp

h(t)))
− ⟨Lh(t), v − u(t) + uh(t)⟩ + H(p−Hp(t)) ,

or equivalently

0 ≤ Ψ1(esym −He
sym(t)) +

∫︂
Ω
C(esym −He

sym(t)) : He
h,sym(t) dx

+Ψ2(curl(p−Hp(t))) + µL2
∫︂

Ω
curl(p−Hp(t)) : curl(Hp

h(t)) dx

−⟨Lh(t), v − u(t)⟩ + H(p−Hp(t)) . (4.56)

By the convergences (4.52) and (4.54) and the absolute continuity of L, we can
pass to the limit in (4.56) and obtain

0 ≤ Ψ1(esym −He
sym(t)) dx+

∫︂
Ω
C(esym −He

sym(t)) : He
sym(t) dx

+Ψ2(curl(p−Hp(t))) + µL2
∫︂

Ω
curl(p−Hp(t)) : curl(Hp(t)) dx

−⟨L(t), v − u(t)⟩ + H(p−Hp(t)) . (4.57)

Adding to both members in (4.57) the quantity

Ψ1(He
sym(t)) + Ψ2(curl(Hp(t))) − ⟨L(t), u(t)⟩

we conclude that the global stability condition (3.56) holds. We now prove that
the convergences (4.53) and (4.54) hold along the whole subsequence kn, for
every t ∈ [0, T ]. Let us fix t ∈ [0, T ]. In view of the global stability condition
(3.56) the pair (u(t), He(t)) minimizes the convex functional

(v, e) ↦→ Ψ1(esym) − ⟨L(t), v⟩ (4.58)

over the convex set {(v, e) | (v, e,Hp(t)) ∈ A(w(t))}. The functional (4.58)
is strictly convex in the second variable. Moreover, if v1, v2 are such that the
triplets (v1, e,H

p(t)), (v2, e,H
p(t)) are both admissible for the boundary value



w(t), then
∇(v1 − v2) = 0 ,

hence v1 = v2 since they have the same boundary value on ΓD. Therefore, the
minimizer of (4.58) is unique. By the Urysohn property we conclude that

ukn(t) ⇀ u(t) in W 1, 3
2 (Ω;R3) , (4.59)

He
kn,sym(t) ⇀ He

sym(t) in L2(Ω;M3×3
sym) . (4.60)

It remains to prove the energy balance. To simplify the notation let us denote
by (k) the subsequence (kn)n. Let us fix t ∈ [0, T ]. We know that the discrete
energy inequality (4.25) holds, that is,

Ek(t) + VH(Hp
k ; 0, t) ≤ E(0) +

∫︂ tj
k

0

∫︂
Ω
CHe

k,sym(τ) : Eẇ(τ) dxdτ

−
∫︂ tj

k

0
⟨L̇(τ), uk(τ)⟩ dτ −

∫︂ tj
k

0
⟨Lk(τ), ẇ(τ)⟩ dτ + εk ,

where j is such that t ∈ [tjk, t
j+1
k ) and εk → 0 as k → ∞. Since ∥uk(t)∥

W 1, 3
2

is
uniformly bounded with respect to k, we have that

|⟨Lk(t), uk(t)⟩ − ⟨L(t), u(t)⟩| ≤ |⟨Lk(t) − L(t), uk(t)⟩| + |⟨L(t), uk(t) − u(t)⟩|
≤∥Lk(t) − L(t)∥W−1,3∥uk(t)∥

W 1, 3
2

+ |⟨L(t), uk(t) − u(t)⟩| → 0 . (4.61)

Since Ψ1 and Ψ2 are weakly lower semicontinuous by convexity, (4.61) implies
that

E(t) ≤ lim inf
k→∞

Ek(t) .

In view of Proposition 3.2.4,

VH(Hp; 0, t) ≤ lim inf
k→∞

VH(Hp
k ; 0, t) .

Finally, the right-hand side of the discrete energy inequality converges, by dom-
inated convergence, to

E(0)+
∫︂ t

0

∫︂
Ω
CHe

sym(τ) : Eẇ(τ) dxdτ−
∫︂ t

0
⟨L̇(τ), u(τ)⟩ dτ−

∫︂ t

0
⟨L(τ), ẇ(τ)⟩ dτ .

In other words, passing to the limit we have proved that

E(t) + VH(Hp; 0, t) ≤ E(0) +
∫︂ t

0

∫︂
Ω
CHe

sym(τ) : Eẇ(τ) dxdτ

−
∫︂ t

0
⟨L̇(τ), u(τ)⟩ dτ −

∫︂ t

0
⟨L(τ), ẇ(τ)⟩ dτ . (4.62)

We now prove the converse inequality. Let us fix t ∈ [0, T ] and h ∈ N. For



j = 0, . . . , h let sjh = j

h
t. Let us fix j ∈ {0, . . . , h− 1}. The triplet

(u(sj+1
h ) − w(sj+1

h ) + w(sjh), He(sj+1
h ) − ∇w(sj+1

h ) + ∇w(sjh), Hp(sj+1
h ))

is admissible for the boundary value w(sjh). Therefore, by the global stability
condition (3.56), we obtain

Ψ1(He
sym(sj+1

h ) − Ew(sj+1
h ) + Ew(sjh)) + Ψ2(curl(Hp(sj+1

h )))
− ⟨L(sjh), u(sj+1

h ) − w(sj+1
h ) + w(sjh)⟩ + H(Hp(sj+1

h ) −Hp(sjh))
≥Ψ1(He

sym(sjh)) + Ψ2(curl(Hp(sjh))) − ⟨L(sjh), u(sjh)⟩ . (4.63)

Equation (4.63) can be rewritten in the following form:

Ψ1(He
sym(sj+1

h )) + Ψ2(curl(Hp(sj+1
h ))) − ⟨L(sj+1

h ), u(sj+1
h )⟩

+H(Hp(sj+1
h ) −Hp(sjh)) ≥ Ψ1(He

sym(sjh)) + Ψ2(curl(Hp(sjh)))

−⟨L(sjh), u(sjh)⟩ +
∫︂ sj+1

h

sj
h

∫︂
Ω
CHe

sym(sj+1
h ) : Eẇ(τ) dτdx

−
∫︂ sj+1

h

sj
h

⟨L̇(τ), u(sj+1
h )⟩ dτ −

∫︂ sj+1
h

sj
h

⟨L(sj+1
h ), ẇ(τ)⟩ dτ + δk,j , (4.64)

where

δh,j := −Ψ1(Ew(sj+1
h ) − Ew(sjh)) + ⟨L(sj+1

h ) − L(sjh), w(sj+1
h ) − w(sjh)⟩ .

Let us define uh, H
e
h and Lh as the left-continuous piecewise constant interpo-

lations of u,He and L, respectively, obtained by taking the value at the point
sj+1
h on each interval (sjh, s

j+1
h ]. Then, summing up (4.64) for j = 0, . . . , h − 1

we obtain

E(t) +
h−1∑︂
j=0

H(Hp(sj+1
h ) −Hp(sjh)) ≥ E(0) +

∫︂ t

0

∫︂
Ω
CHe

h,sym(τ) : Eẇ(τ) dτdx

−
∫︂ t

0
⟨L̇(τ), uh(τ)⟩ dτ −

∫︂ t

0
⟨Lh(τ), ẇ(τ)⟩ dτ +

h−1∑︂
j=0

δh,j .

By definition of VH it follows immediately that

E(t) + VH(Hp; 0, t) ≥ E(0) +
∫︂ t

0

∫︂
Ω
CHe

h,sym(τ) : Eẇ(τ) dτdx

−
∫︂ t

0
⟨L̇(τ), uh(τ)⟩ dτ −

∫︂ t

0
⟨Lh(τ), ẇ(τ)⟩ dτ +

h−1∑︂
j=0

δh,j . (4.65)

We would like to pass to the limit in (4.65). Note that, arguing as in the proof

of Proposition 4.2.2, we can show that
h−1∑︁
j=0

δh,j → 0, as h → ∞. By the absolute



continuity of L we already know that

Lh(s) → L(s) in W−1,3(Ω;R3) ∀ s ∈ [0, T ] .

Hence, we can pass to the limit in (4.65) by dominated convergence if we prove
that for almost every s ∈ [0, T ], the following convergences hold:

uh(s) ⇀ u(s) in W 1, 3
2 (Ω;R3) , (4.66)

H
e
h,sym(s) ⇀ He

sym(s) in L2(Ω;M3×3
sym) . (4.67)

Hp
sym and Hp

skew are by construction functions of bounded variation with values
in BV (Ω;M3×3

sym,D) and L1(Ω;M3×3
skew), respectively. Therefore, they are almost

everywhere continuous. Let s be a point of continuity for both maps. By
Proposition 3.2.7 s is a point of continuity also for the map

He
sym : [0, T ] → L2(Ω;M3×3

sym) .

Finally, applying Theorem 2.2.2 and Theorem 2.2.3 s is a point of continuity
for the map

u : [0, T ] → W 1, 3
2 (Ω;R3) .

Therefore, convergences (4.66) and (4.67) hold almost everywhere.



Chapter 5

Constitutive equations and
the flow rule

In this chapter we will derive the constitutive equations for an energetic solution
to the Gurtin model. The chapter is organized as follows: in the first section we
will deduce the constitutive equations for the macro and micro stresses given
by (3.6), (3.7), (3.9), and (3.10); in the last section we will show how to give a
meaning to the flow rule (3.21) and (3.22). As a corollary we will prove that the
evolution of the elastic strain and the Burgers vector are uniquely determined
by the initial datum.

We will suppose for the whole chapter that the map

t ↦→ (u(t), He(t), Hp(t))

is an energetic solution for the Gurtin model. We define the stresses

T (t) := CHe(t)

and
R(t) := µL2 curl(Hp(t)) , (5.1)

as in (3.15) and (3.18).

5.1 Constitutive equations

Proposition 5.1.1. For every t ∈ [0, T ] the stress T (t) ∈ L2
div(Ω,M3×3

sym) satis-
fies the following conditions:{︄

− div(T (t)) = f(t) in L2(Ω;R3) ,
γν(T (t)) = g(t) on ΓN ,

where γν is the normal trace. The second equation has to be intended in the
following sense: for every ψ ∈ H

1
2 (∂Ω;R3) such that ψ = 0 H 2-a.e on ΓD

⟨γν(T (t)), ψ⟩ =
∫︂

ΓN

g(t) · ψ dH 2 .
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Proof. Let t ∈ [0, T ]. Let ϕ ∈ H1(Ω;R3) such that ψ = 0 H 2-a.e on ΓD. Then

(u(t) + εϕ,He + ε∇ϕ,Hp) ∈ A(w(t)) ,

hence by the global stability (3.56)

Ψ1(He
sym(t)) + Ψ2(curl(Hp(t))) − ⟨L(t), u(t)⟩

≤ Ψ1(He
sym(t) + εEϕ) + Ψ2(curl(Hp(t))) − ⟨L(t), u(t) + εϕ⟩ . (5.2)

Equation (5.2) can be rewritten in the following form:

ε2Ψ1(Eϕ) + ε

∫︂
Ω
T (t) : ∇ϕ dx− ε⟨L(t), ϕ⟩ ≥ 0 . (5.3)

Dividing by ε > 0 and letting ε → 0+ in (5.3) we deduce∫︂
Ω
T (t) : ∇ϕ dx− ⟨L(t), ϕ⟩ ≥ 0 .

If ε → 0−, we obtain ∫︂
Ω
T (t) : ∇ϕ dx− ⟨L(t), ϕ⟩ ≤ 0 .

Therefore, we conclude that for every ϕ ∈ H1(Ω;R3) such that ϕ = 0 H 2-a.e
on ΓD ∫︂

Ω
T (t) : ∇ϕ dx = ⟨L(t), ϕ⟩ . (5.4)

In particular, if ϕ ∈ D(Ω;R3), we have

⟨div(T (t)), ϕ⟩ = −
∫︂

Ω
f(t) · ϕ dx .

Hence, T (t) ∈ L2
div(Ω;M3×3

sym) and

− div(T (t)) = f(t) in L2(Ω;R3) . (5.5)

Since T (t) ∈ L2
div(Ω;M3×3

sym) the normal trace γν(T (t)) is well defined as an
element of H− 1

2 (∂Ω;R3). By (5.4) and (5.5), for every ψ ∈ H1(Ω;R3) such that
ψ = 0 H 2-a.e on ΓD, we have

⟨γν(T (t)), ψ⟩ = −
∫︂

Ω
f(t) · ψ dx+

∫︂
Ω
T (t) : ∇ψ dx =

∫︂
ΓN

g(t) · ψ dH 2 .

This concludes the proof.

In order to prove the constitutive equations (3.9) and (3.10) we need to
define the plastic stresses for an energetic solution to the Gurtin model. This
is the aim of the next proposition.



Proposition 5.1.2. There exist maps

T p : [0, T ] → L∞(Ω;M3×3
D ) ,

Kdiss : [0, T ] → L∞(Ω;M3×3×3
D,sym ) ,

S : [0, T ] → Mb(Ω;M3×3×3
D,sym )∗ ,

such that for every t ∈ [0, T ] and (v, e, p) ∈ A(0)∫︂
Ω
T (t) : esym dx+

∫︂
Ω
R(t) : curl(p) dx− ⟨L(t), v⟩

= −
∫︂

Ω
T p(t) : p dx−

∫︂
Ω
Kdiss(t) : ∇apsym dx− ⟨S(t),∇spsym⟩ . (5.6)

Moreover, for every (A,B,C) ∈ L1(Ω;M3×3
D )×L1(Ω;M3×3×3

D,sym )×Mb(Ω;M3×3×3
D,sym )⃓⃓⃓⃓∫︂

Ω
T p(t) : A dx+

∫︂
Ω
Kdiss(t) : B dx+ ⟨S(t), C⟩

⃓⃓⃓⃓
≤ Y0∥(A,B)∥H + hY0|C|(Ω) ∀ t ∈ [0, T ] . (5.7)

Proof. By Lemma 3.2.1 we have that for every (v, e, p) ∈ A(0)⃓⃓⃓⃓∫︂
Ω
T (t) : esym dx+

∫︂
Ω
R(t) : curl(p) dx− ⟨L(t), v⟩

⃓⃓⃓⃓
≤ H(p) . (5.8)

In particular, the linear functional Φ : A(0) → R given by

(v, e, p) ↦→
∫︂

Ω
T (t) : esym dx+

∫︂
Ω
R(t) : curl(p) dx− ⟨L(t), v⟩

depends only on p. Let us denote by X the linear subspace of

L1(Ω;M3×3
D ) × L1(Ω;M3×3×3) × Mb(Ω;M3×3×3) (5.9)

made of all triplets (p,∇apsym,∇spsym) such that (v, e, p) ∈ A(0) for some e, v.
The functional Φ is well defined on X since it depends only on p and by (5.8)
is continuous with respect to the strong topology of (5.9). Therefore, by the
Hahn-Banach Theorem it admits a continuous extension defined on the space
(5.9). Let us denote by Φ̃ such extension. By the Hahn-Banach Theorem, (5.8)
still holds on the whole space, that is,

|Φ̃(A,B,C)| ≤ Y0∥(A,B)∥H + hY0|C|(Ω)
∀ (A,B,C) ∈ L1(Ω;M3×3

D ) × L1(Ω;M3×3×3) × Mb(Ω;M3×3×3) .

By the Riesz representation Theorem Φ̃ can be represented by means of oper-
ators T p(t),Kdiss(t), S(t) as in (5.7). Finally, (5.6) holds by construction.

Let Kdiss, T p, and S be the tensors given by Proposition 5.1.2 for the
energetic solution

t ↦→ (u(t), He(t), Hp(t)) .



Let us define the tensor K(t) := Kdiss(t) +Ken(t), where Ken is given by

(Ken(t))ijk =
∑︂
h

(R(t))hiϵhkj − 1
3δij

∑︂
h,m

(R(t))hmϵhkm . (5.10)

Note that, by definition, K(t) ∈ L2(Ω;M3×3
D ) for every t ∈ [0, T ].

Lemma 5.1.1. For every t ∈ [0, T ] and for every A ∈ H1(Ω;M3×3
D ) the fol-

lowing holds:
R(t) : curl(A) = Ken(t) : ∇A . (5.11)

Proof. Let t ∈ [0, T ]. Let us denote by P (t) the tensor given by

P (t) :=
(︄∑︂

h

(R(t))hiϵhkj
)︄
ijk

and let us call F the linear operator such that

(F (B))ij =
∑︂
p,q

ϵipqBjqp ∀ B ∈ M3×3×3 .

It is immediate to see that

P (t) : B = R(t) : F (B) ∀ B ∈ M3×3×3

Let A ∈ H1(Ω;M3×3
D ). Since F (∇A) = curl(A) by definition, we deduce

P (t) : ∇A = R(t) : curl(A) .

Ken(t) is, by definition, the projection of P (t) on the subspace of deviatoric ten-
sors in the first two subscripts. Since A takes values in the deviatoric matrices,
we obtain (5.11).

Proposition 5.1.3. For every t ∈ [0, T ] the plastic stress K(t) ∈ L2
div(Ω;M3×3

D ).
Moreover, T p(t) and K(t) satisfy{︄

T p(t) = TD(t) + div(K(t)) in L2(Ω;M3×3
D ) ,

γν(K(t)) = 0 in H− 1
2 (∂Ω;M3×3

D ) .

Proof. Let ψ ∈ C∞(Ω;M3×3
D ) and t ∈ [0, T ]. Clearly (0,−ψ,ψ) ∈ A(0), hence

by Proposition 5.1.2 we have

−
∫︂

Ω
T (t) : ψ dx+

∫︂
Ω
R(t) : curl(ψ) dx+

∫︂
Ω
T p(t) : ψ dx

+
∫︂

Ω
Kdiss(t) : ∇ψ dx = 0 . (5.12)

By Lemma 5.1.1 we can rewrite (5.12) in the following form:

−
∫︂

Ω
TD(t) : ψ dx+

∫︂
Ω
T p(t) : ψ dx+

∫︂
Ω
K(t) : ∇ψ dx = 0 . (5.13)



The previous equation implies that K(t) ∈ L2
div(Ω;M3×3

D ) and

T p(t) = TD(t) + div(K(t)) in L2(Ω;M3×3
D ) .

In particular the normal trace γν(K(t)) is well defined in H− 1
2 (∂Ω;M3×3

D ) and
is equal to 0 by (5.13). This concludes the proof.

5.2 The flow rule

In this section we will show that the flow rule given in (3.21) and (3.22) is
satisfied. To establish this result we will need to prove the existence of the time
derivatives for an energetic solution to the Gurtin model. Indeed, we will see
that all the involved maps are absolutely continuous. We start by proving the
constraint (3.24).

Proposition 5.2.1. The plastic stresses T p and Kdiss satisfy the following
constraint: for every t ∈ [0, T ]√︄

|T psym(t)|2 + 1
χ

|T pskew(t)|2 + 1
h2 |Kdiss(t)|2 ≤ Y0 a.e. in Ω .

Moreover, ∥S(t)∥M ∗
b

≤ hY0 for every t ∈ [0, T ].

Proof. Let t ∈ [0, T ]. Choosing A = 0, B = 0 in (5.7), we deduce

|⟨S(t), C⟩| ≤ hY0∥C∥Mb
∀ C ∈ Mb(Ω;M3×3×3

D,sym ) .

Hence,
∥S(t)∥M ∗

b
≤ hY0 .

Similarly, setting C = 0 in (5.7), we have⃓⃓⃓⃓∫︂
Ω
T p(t) : A dx+

∫︂
Ω
Kdiss(t) : B dx

⃓⃓⃓⃓
≤ Y0∥(A,B)∥H

for every (A,B) ∈ L1(Ω;M3×3
D ) × L1(Ω;M3×3×3

D,sym ). Recalling (4.12) we deduce
that

∥(T p(t),Kdiss(t))∥∗
H ≤ Y0 .

We now show the absolute continuity of the solution.

Theorem 5.2.1. The maps

u : [0, T ] → W 1, 3
2 (Ω;R3) ,

He
sym : [0, T ] → L2(Ω;M3×3

sym) ,
Hp
sym : [0, T ] → BV(Ω;M3×3

D,sym) ,
Hp
skew : [0, T ] → L1(Ω;M3×3

skew) ,



curl(Hp) : [0, T ] → L2(Ω;M3×3)

are absolutely continuous.

Proof. We fix t1, t2 ∈ [0, T ] where t1 < t2. By the energy balance (3.57) we
have that

Ψ1(He
sym(t2)) − Ψ1(He

sym(t1)) + Ψ2(curl(Hp(t2))) − Ψ2(curl(Hp(t1)))
− ⟨L(t2), u(t2)⟩ + ⟨L(t1), u(t1)⟩ + H(Hp(t2) −Hp(t1)) (5.14)

≤
∫︂ t2

t1

∫︂
Ω
CHe

sym(τ) : Eẇ(τ) dxdτ −
∫︂ t2

t1
⟨L̇(τ), u(τ)⟩ dτ −

∫︂ t2

t1
⟨L(τ), ẇ(τ)⟩ dτ .

The triplet (v, e, p) defined by

v = u(t2) − u(t1) − (w(t2) − w(t1)) ,
e = He(t2) −He(t1) − (∇w(t2) − ∇w(t1)) ,
p = Hp(t2) −Hp(t1) ,

is admissible for the zero boundary value; hence, by Lemma 3.2.1, we have

−
∫︂

Ω
CHe

sym(t1) : (He
sym(t2) −He

sym(t1) − (Ew(t2) − Ew(t1))) dx

− µL2
∫︂

Ω
curl(Hp(t1)) : (curl(Hp(t2) − curl(Hp(t1))) dx

+ ⟨L(t1), u(t2) − u(t1) − (w(t2) − w(t1))⟩ ≤ H(Hp(t2) −Hp(t1)) . (5.15)

Combining (5.14) and (5.15), we obtain

Ψ1(He
sym(t2) −He

sym(t1)) + Ψ2(curl(Hp(t2)) − curl(Hp(t1)))

≤
∫︂ t2

t1

∫︂
Ω
CHe

sym(τ) : Eẇ(τ) dxdτ −
∫︂ t2

t1
⟨L̇(τ), u(τ)⟩ dτ −

∫︂ t2

t1
⟨L(τ), ẇ(τ)⟩ dτ

+ ⟨L(t2) − L(t1), u(t2)⟩ + ⟨L(t1), w(t2) − w(t1)⟩

−
∫︂

Ω
CHe

sym(t1) : (Ew(t2) − Ew(t1)) dx

=
∫︂ t2

t1

∫︂
Ω

(CHe
sym(τ) − CHe

sym(t1)) : Eẇ(τ) dxdτ

−
∫︂ t2

t1
⟨L̇(τ), u(τ) − u(t2)⟩ dτ −

∫︂ t2

t1
⟨L(τ) − L(t1), ẇ(τ)⟩ dτ . (5.16)

By Proposition 3.2.6 we can rewrite (5.16) as follows:

Ψ1(He
sym(t2) −He

sym(t1)) + Ψ2(curl(Hp(t2)) − curl(Hp(t1)))

≤
∫︂ t2

t1

∫︂
Ω

(CHe
sym(τ) − CHe

sym(t1)) : Eẇ(τ) dxdτ

−
∫︂ t2

t1

∫︂
Ω
ρ̇(τ) : (He

sym(τ) −He
sym(t2)) dxdτ



−
∫︂ t2

t1

∫︂
Ω
ρ̇D(τ) : (Hp

sym(τ) −Hp
sym(t2)) dxdτ

−
∫︂ t2

t1

∫︂
Ω

(ρ(τ) − ρ(t1)) : Eẇ(τ) dxdτ . (5.17)

Indeed, the previous inequality follows by observing that

−
∫︂ t2

t1
⟨L̇(τ), w(τ)⟩ dτ +

∫︂ t2

t1

∫︂
Ω
ρ̇(τ) : Ew(τ) dxdτ +

∫︂ t2

t1
⟨L̇(τ), w(t2)⟩ dτ

−
∫︂ t2

t1

∫︂
Ω
ρ̇(τ) : Ew(t2) dxdτ −

∫︂ t2

t1
⟨L(τ), ẇ(τ)⟩ dτ +

∫︂ t2

t1

∫︂
Ω
ρ(τ) : Eẇ(τ) dxdτ

+
∫︂ t2

t1
⟨L(t1), ẇ(τ)⟩ dτ −

∫︂ t2

t1

∫︂
Ω
ρ(t1) : Eẇ(τ) dxdτ

= −
∫︂ t2

t1

d

dτ
[⟨L(τ), w(τ)⟩] dτ +

∫︂
Ω

∫︂ t2

t1

d

dτ
[ρ(τ) : Ew(τ)] dτ

+
∫︂ t2

t1

d

dτ
[⟨L(τ), w(t2)⟩] dτ −

∫︂
Ω

∫︂ t2

t1

d

dτ
[ρ(τ) : Ew(t2)]dτ

+
∫︂ t2

t1

d

dτ
[⟨L(t1), w(τ)⟩] dτ −

∫︂
Ω

∫︂ t2

t1

d

dτ
[ρ(t1) : Ew(τ)] dτ = 0 .

By the Hölder inequality, (3.44), and (5.17) we deduce that

αC
2 ∥He

sym(t2) −He
sym(t1))∥2

L2 + µL2

2 ∥ curl(Hp(t2)) − curl(Hp(t1))∥2
L2

≤ βC

∫︂ t2

t1
∥He

sym(τ) −He
sym(t1)∥L2∥Eẇ(τ)∥L2 dτ

+
∫︂ t2

t1
∥ρ̇(τ)∥L2∥He

sym(τ) −He
sym(t2)∥L2 dτ

+
∫︂ t2

t1
∥ρ̇D(τ)∥L∞∥Hp

sym(τ) −Hp
sym(t2)∥L1 dτ

+
∫︂ t2

t1
∥ρ(τ) − ρ(t1)∥L2∥Eẇ(τ)∥L2 dτ . (5.18)

Let
ϕ(τ) := ∥ρ̇(τ)∥L2 + ∥ρ̇D(τ)∥L∞ + ∥Eẇ(τ)∥L2 .

Given the regularity of ρ, ρD, and w we know that ϕ ∈ L1(0, T ). Note that

∥ρ(τ) − ρ(t1)∥L2 =
⃦⃦⃦⃦∫︂ τ

t1
ρ̇(s) ds

⃦⃦⃦⃦
L2

≤
∫︂ t2

t1
∥ρ̇(s)∥L2 ds ≤

∫︂ t2

t1
ϕ(s) ds . (5.19)

Therefore, by (5.18) and (5.19), there exists C > 0, depending only on αC and
βC, such that

∥He
sym(t2) −He

sym(t1))∥2
L2 + µL2

2 ∥ curl(Hp(t2)) − curl(Hp(t1))∥2
L2

≤ C

∫︂ t2

t1
ϕ(τ)∥He

sym(τ) −He
sym(t1)∥L2 dτ



+ C

∫︂ t2

t1
ϕ(τ)∥He

sym(τ) −He
sym(t2)∥L2 dτ

+ C

∫︂ t2

t1
ϕ(τ)∥Hp

sym(τ) −Hp
sym(t2)∥L1 dτ + C

(︃∫︂ t2

t1
ϕ(τ) dτ

)︃2
. (5.20)

Therefore, by the Cauchy inequality there exists a new constant C > 0, de-
pending only on αC and βC, such that

∥He
sym(t2) −He

sym(t1))∥2
L2 + µL2

2 ∥ curl(Hp(t2)) − curl(Hp(t1))∥2
L2

≤ C

∫︂ t2

t1
ϕ(τ)∥He

sym(t2) −He
sym(τ)∥L2 dτ

+ C

∫︂ t2

t1
ϕ(τ)∥Hp

sym(t2) −Hp
sym(τ)∥L1 dτ + C

(︃∫︂ t2

t1
ϕ(τ) dτ

)︃2
. (5.21)

Let s ∈ [t1, t2). By Proposition 4.1.3 we have that

α∥Hp
sym(t2) −Hp

sym(s)∥BV + β∥Hp
skew(t2) −Hp

skew(s)∥L1

≤ H(Hp(t2) −Hp(s)) −
∫︂

Ω
ρD(t2) : (Hp

sym(t2) −Hp
sym(s)) dx . (5.22)

Putting t1 = s in (5.14), by (5.22) we deduce

α∥Hp
sym(t2) −Hp

sym(s)∥BV + β∥Hp
skew(t2) −Hp

skew(s)∥L1

≤ Ψ1(He
sym(s)) − Ψ1(He

sym(t2)) + Ψ2(curl(Hp(s))) − Ψ2(curl(Hp(t2)))

+ ⟨L(t2), u(t2)⟩ − ⟨L(s), u(s)⟩ +
∫︂ t2

s

∫︂
Ω
CHe

sym(τ) : Eẇ(τ) dxdτ

−
∫︂ t2

s
⟨L̇(τ), u(τ)⟩ dτ −

∫︂ t2

s
⟨L(τ), ẇ(τ)⟩ dτ

−
∫︂

Ω
ρD(t2) : (Hp

sym(t2) −Hp
sym(s)) dx . (5.23)

Applying Proposition 3.2.5 and Proposition 3.2.6 we infer from (5.23) that

α∥Hp
sym(t2) −Hp

sym(s)∥BV + β∥Hp
skew(t2) −Hp

skew(s)∥L1

≤ Ψ1(He
sym(s)) − Ψ1(He

sym(t2)) + Ψ2(curl(Hp(s))) − Ψ2(curl(Hp(t2)))

+
∫︂

Ω
ρ(t2) : (He

sym(t2) −He
sym(s)) dx+

∫︂
Ω

(ρ(t2) − ρ(s)) : He
sym(s) dx

+
∫︂

Ω
(ρD(t2) − ρD(s)) : Hp

sym(s) dx−
∫︂ t2

s

∫︂
Ω
ρ̇(τ) : He

sym(τ) dxdτ (5.24)

−
∫︂ t2

s

∫︂
Ω
ρ̇D(τ) : Hp

sym(τ)dxdτ +
∫︂ t2

s

∫︂
Ω

(CHe
sym(τ) − ρ(τ)) : Eẇ(τ) dxdτ .

Indeed, we have the following identity:

⟨L(t2), w(t2)⟩ −
∫︂

Ω
ρ(t2) : Ew(t2) dx− ⟨L(s), w(s)⟩ +

∫︂
Ω
ρ(s) : Ew(s) dx



−
∫︂ t2

s
⟨L̇(τ), w(τ)⟩ dτ +

∫︂ t2

s

∫︂
Ω
ρ̇(τ) : Ew(τ) dxdτ −

∫︂ t2

s
⟨L(τ), ẇ(τ)⟩ dτ

+
∫︂ t2

s

∫︂
Ω
ρ(τ) : Eẇ(τ) dxdτ = ⟨L(t2), w(t2)⟩ −

∫︂
Ω
ρ(t2) : Ew(t2) dx

− ⟨L(s), w(s)⟩ +
∫︂

Ω
ρ(s) : Ew(s) dx−

∫︂ t2

s

d

dτ
[⟨L(τ), w(τ)⟩] dτ

+
∫︂

Ω

∫︂ t2

s

d

dτ
[ρ(τ) : Ew(τ)] dxdτ = 0 .

By the Hölder inequality and (5.24) we obtain

α∥Hp
sym(t2) −Hp

sym(s)∥BV + β∥Hp
skew(t2) −Hp

skew(s)∥L1

≤ βC
2 ∥He

sym(t2) −He
sym(s)∥L2∥He

sym(t2) +He
sym(s)∥L2

+ µL2

2 ∥ curl(Hp(t2)) − curl(Hp(s))∥L2∥ curl(Hp(t2)) + curl(Hp(s))∥L2

+ ∥ρ(t2)∥L2∥He
sym(t2) −He

sym(s)∥L2

+ ∥ρ(t2) − ρ(s)∥L2∥He
sym(s)∥L2 + ∥ρD(t2) − ρD(s)∥L∞∥Hp

sym(s)∥L1

+
∫︂ t2

s
∥ρ̇(τ)∥L2∥He

sym(τ)∥L2 dτ +
∫︂ t2

s
∥ρ̇D(τ)∥L∞∥Hp

sym(τ)∥L1 dτ

+
∫︂ t2

s
∥CHe

sym(τ) − ρ(τ)∥L2∥Eẇ(τ)∥L2 dτ . (5.25)

Note that

∥ρ(t2) − ρ(s)∥L2 =
⃦⃦⃦⃦∫︂ t2

s
ρ̇(τ) dτ

⃦⃦⃦⃦
L2

≤
∫︂ t2

s
∥ρ̇(τ)∥L2 dτ , (5.26)

∥ρD(t2) − ρD(s)∥L∞ ≤
∫︂ t2

s
∥ρ̇D(τ)∥L∞ dτ . (5.27)

By the absolute continuity of ρ we also have

sup
t∈[0,T ]

∥ρ(t)∥L2 < +∞ . (5.28)

Moreover, by Proposition 4.3.1 and Remark 4.3.1 we have

V(Hp
sym; 0, T ;L1) ≤ 2C2

M
, (5.29)

sup
t∈[0,T ]

∥He
sym(t)∥L2 ≤ C1 (5.30)

sup
t∈[0,T ]

√︃
µ

2L∥ curl(Hp(t))∥L2 ≤
√︁
C2 , (5.31)

where M is the constant in (3.50). Taking into account (5.26)-(5.31) equation
(5.25) can be rewritten in the following form:

α∥Hp
sym(t2) −Hp

sym(s)∥BV + β∥Hp
skew(t2) −Hp

skew(s)∥L1



≤ C ′∥He
sym(t2) −He

sym(s)∥L2 + C ′
√︃
µ

2L∥ curl(Hp(t2)) − curl(Hp(s))∥L2

+ C ′
∫︂ t2

s
ϕ(τ) dτ ∀ s ∈ [t1, t2] , (5.32)

where C ′ > 0 depends only on βC, C1, C2, ρ,M , and ∥Hp
sym(0)∥L1 . Note that,

using Remark 4.1.1 in place of Proposition 4.1.3, the same argument provides
us with an estimate for the L1 norm of Hp

sym(t2) −Hp
sym(t1) independent of the

constant α (hence, independent of h). More precisely,

∥Hp
sym(t2) −Hp

sym(s)∥L1 ≤ C ′′∥He
sym(t2) −He

sym(s)∥L2 (5.33)

+ C ′′
√︃
µ

2L∥ curl(Hp(t2)) − curl(Hp(s))∥L2 + C ′′
∫︂ t2

s
ϕ(τ) dτ ∀ s ∈ [t1, t2] ,

where C ′′ > 0 depends only on βC, C1, C2, ρ,M , and ∥Hp
sym(0)∥L1 . Combining

(5.21) and (5.33) we deduce

∥He
sym(t2) −He

sym(t1))∥2
L2 + µL2

2 ∥ curl(Hp(t2)) − curl(Hp(t1))∥2
L2

≤ C

∫︂ t2

t1
ϕ(τ)∥He

sym(τ) −He
sym(t1)∥L2 dx (5.34)

+ C

√︃
µ

2L
∫︂ t2

t1
ϕ(τ)∥ curl(Hp(τ)) − curl(Hp(t1))∥L2 dτ + C

(︃∫︂ t2

t1
ϕ(τ) dτ

)︃2
,

where C > 0 depends on αC, βC, C1, C2, ρ,M , and ∥Hp
sym(0)∥L1 . Applying

Lemma 5.3 in [15] we infer from (5.34)

∥He
sym(τ) −He

sym(t1)∥L2 +
√︃
µ

2L∥ curl(Hp(τ)) − curl(Hp(t1))∥L2

≤ C

∫︂ t2

t1
ϕ(τ) dτ

for some C > 0 that depends only upon αC, βC, C1, C2, ρ,M , and ∥Hp
sym(0)∥L1 .

Hence He
sym and curl(Hp) are absolutely continuous. By (5.32) we deduce

that Hp
sym and Hp

skew are absolutely continuous, too. Finally, applying Theo-
rem 2.2.2 and Theorem 2.2.4 we conclude that u is absolutely continuous.

Since u, He
sym, and curl(Hp) are absolutely continuous with values in a

reflexive space, the time derivatives u̇, Ḣe
sym, and curl(Ḣp) exist almost every-

where. Similarly, if we consider Hp
skew as a map with values in Mb(Ω;M3×3

skew),
the time derivatives Ḣp

sym and Ḣp
skew exist as the weak∗ limit of the difference

quotients. In particular, we have proved the following corollary.

Corollary 5.2.1. There exists a positive constant K1, independent of χ, h, and
L, such that for almost every t ∈ [0, T ]

∥u̇(t)∥
W 1, 3

2
≤ (K1 + 1

α
K1)ϕ(t) ,

∥Ḣe
sym(t)∥L2 ≤ K1ϕ(t) ,



∥ curl(Ḣp(t))∥L2 ≤ K1ϕ(t) ,

∥Ḣp
sym(t)∥BV ≤ 1

α
K1ϕ(t) ,

∥Ḣp
skew(t)∥Mb

≤ 1
β
K1ϕ(t) ,

∥Ḣp
sym(t)∥L1 ≤ K1ϕ(t) ,

where
ϕ(t) := ∥ρ̇(t)∥L2 + ∥ρ̇D(t)∥L∞ + ∥Eẇ(t)∥L2

and α, β are the constants defined in (4.14) and (4.15). Moreover, by Proposi-
tion 4.3.1 the constant K1 can be chosen with the following form:

K1 = K ′
1|ψ(He

sym(0), curl(Hp(0)))| +K ′
1∥He

sym(0)∥L2 +K ′
1∥Hp

sym(0)∥L1 +K ′
1 ,

where K ′
1 does not depend on the initial triplet.

As a remark, note that for almost every t ∈ [0, T ] the triplet

(u̇(t), Ḣe(t), Ḣp(t))

is admissible for the boundary value ẇ(t).

Proposition 5.2.2. Let t ∈ [0, T ] be such that the time derivatives Ḣe
sym(t),

Ḣp
sym(t), Ḣp

skew(t), u̇(t), and ẇ(t) exist. Then

H(Ḣp(t)) = −
∫︂

Ω
T (t) : (Ḣe

sym(t) − Eẇ(t)) dx

−
∫︂

Ω
R(t) : curl(Ḣp(t)) dx+ ⟨L(t), u̇(t) − ẇ(t)⟩

and

H(Ḣp(t)) =
∫︂

Ω
T p(t) : Ḣp dx+

∫︂
Ω
Kdiss(t) : ∇aḢp

sym(t) dx

+ ⟨S(t),∇sḢp
sym(t)⟩ .

Proof. By Theorem 7.1 in [15] we have for every s ∈ [0, T ]

VH(Hp; 0, s) =
∫︂ s

0
H(Ḣp(τ)) dτ .

Therefore, differentiating the energy balance (3.57) with respect to time at t
we obtain∫︂

Ω
T (t) : Ḣe

sym(t) dx+
∫︂

Ω
R(t) : curl(Ḣp(t)) dx− ⟨L̇(t), u(t)⟩

− ⟨L(t), u̇(t)⟩ + H(Ḣp(t)) =
∫︂

Ω
T (t) : Eẇ(t) dx− ⟨L̇(t), u(t)⟩ − ⟨L(t), ẇ(t)⟩ .



This proves the first part of the proposition. The triplet

(u̇(t) − ẇ(t), Ḣe(t) − ∇ẇ(t), Ḣp(t))

is admissible for the zero boundary value, hence the second part of the thesis
follows from (5.6).

Corollary 5.2.2. Let
t ↦→ (u(t), He(t), Hp(t))

be an energetic solution to the Gurtin model. The maps

t ↦→ He
sym(t) , t ↦→ curl(Hp(t))

are uniquely determined by the initial triplet (u(0), He(0), Hp(0)).

Proof. Let

t ↦→ (u1(t), He
1(t), Hp

1 (t)) , t ↦→ (u2(t), He
2(t), Hp

2 (t))

be two energetic solutions to the Gurtin model with the same initial datum.
Let T1(t) := CHe

1,sym(t) and T2(t) := CHe
2,sym(t). Let T p1 ,K1,diss, and S1 be

the plastic stresses given in Proposition 5.1.2 for the solution

t ↦→ (u1(t), He
1(t), Hp

1 (t)) .

Similarly, we define T p2 ,K2,diss, and S2. Finally, let R1(t) = µL2 curl(Hp
1 (t))

and R2(t) = µL2 curl(Hp
2 (t)). By Proposition 5.2.2 and Proposition 5.1.2 we

deduce that for almost every t ∈ [0, T ]

−
∫︂

Ω
T1(t) : (Ḣe

1,sym(t) − Eẇ(t)) dx−
∫︂

Ω
R1(t) : curl(Ḣp

1 (t)) dx

+ ⟨L(t), u̇1(t) − ẇ(t)⟩ = H(Ḣp
1 (t)) ≥

∫︂
Ω
T p2 (t) : Ḣp

1 (t) dx

+
∫︂

Ω
K2,diss(t) : ∇aḢp

1,sym(t) dx+ ⟨S2(t),∇sḢp
1,sym(t)⟩

= −
∫︂

Ω
T2(t) : (Ḣe

1,sym(t) − Eẇ(t)) dx−
∫︂

Ω
R2(t) : curl(Ḣp

1 (t)) dx

+ ⟨L(t), u̇1(t) − ẇ(t)⟩ .

Therefore, for almost every t ∈ [0, T ]

−
∫︂

Ω
(T2(t) − T1(t)) : (Ḣe

1,sym(t) − Eẇ(t)) dx

−
∫︂

Ω
(R2(t) −R1(t)) : curl(Ḣp

1 (t)) dx ≤ 0 . (5.35)

With the same argument one can prove that for almost every t ∈ [0, T ]

−
∫︂

Ω
(T1(t) − T2(t)) : (Ḣe

2,sym(t) − Eẇ(t)) dx



−
∫︂

Ω
(R1(t) −R2(t)) : curl(Ḣp

2 (t)) dx ≤ 0 . (5.36)

Summing up (5.35) and (5.36) we have∫︂
Ω

(T2(t) − T1(t)) : (Ḣe
2,sym(t) − Ḣe

1,sym(t)) dx

+
∫︂

Ω
(R2(t) −R1(t)) : (curl(Ḣp

2 (t)) − curl(Ḣp
1 (t))) dx ≤ 0 for a.e t ∈ [0, T ] ,

(5.37)

that is

d

dt

(︂
Ψ1(He

2,sym(t) −He
1,sym(t)) + Ψ2(curl(Hp

2 (t)) − curl(Hp
1 (t)))

)︂
≤ 0 .

for almost every t ∈ [0, T ]. Since at t = 0 we have

Ψ1(He
2,sym(0) −He

1,sym(0)) + Ψ2(curl(Hp
2 (0)) − curl(Hp

1 (0))) = 0

the proof is concluded.

We are now in the position to derive the flow rule for an energetic solution
to the Gurtin model.

Theorem 5.2.2 (Flow rule in a weak form). Let t ∈ [0, T ] be such that the
time derivatives Ḣp

sym and Ḣp
skew exist. Then:

1. for every (A,B) ∈ L∞(Ω;M3×3
D )×L∞(Ω;M3×3×3

D ) such that ∥(A,B)∥∗
H ≤

Y0 there holds∫︂
Ω

(T p(t) −A) : Ḣp(t) dx+
∫︂

Ω
(Kdiss(t) −B) : ∇aḢp

sym(t) dx ≥ 0 ;

2. for every C ∈ Mb(Ω;M3×3×3)∗ such that ∥C∥M ∗
b

≤ hY0 there holds

⟨S(t) − C,∇sḢp
sym(t)⟩ ≥ 0 .

Proof. Let

X := L1(Ω;M3×3) × L1(Ω;M3×3×3) × Mb(Ω;M3×3×3) .

We define the map

Ψ : X → [0,∞) : (A,B,C) ↦→ Y0∥(A,B)∥H + hY0|C|(Ω)

and the set

K :=
{︃

(A,B,C) ∈ L∞(Ω;M3×3) × L∞(Ω;M3×3×3) × Mb(Ω;M3×3×3)∗ :

∥(A,B)∥∗
H ≤ Y0 and ∥C∥M ∗

b
≤ hY0

}︂
.



By (4.11) we have

Ψ(D,E, F ) ≥
∫︂

Ω
A : D dx+

∫︂
Ω
B : E dx+ ⟨C,F ⟩ (5.38)

for every (A,B,C) ∈ K and (D,E, F ) ∈ X. Note that

(Ḣp(t),∇aḢp
sym(t),∇sḢp

sym(t)) ∈ X .

Moreover,
Ψ(Ḣp(t),∇aḢp

sym(t),∇sḢp
sym(t)) = H(Ḣp(t)) .

Hence, by Proposition 5.2.2 and (5.38) we deduce∫︂
Ω

(T p(t) −A) : Ḣp(t) dx+
∫︂

Ω
(Kdiss(t) −B) : ∇aḢp

sym(t) dx

+⟨S − C,∇sḢp
sym(t)⟩ ≥ 0 (5.39)

for every (A,B,C) ∈ K. By Proposition 5.2.1 we have

(T p(t),Kdiss(t), 0) , (0, 0, S(t)) ∈ K .

Hence, choosing

(A,B,C) = (T p(t),Kdiss(t), 0) , (A,B,C) = (0, 0, S(t))

in (5.39) proves the thesis.

Theorem 5.2.3 (Flow rule). Let t ∈ [0, T ] be such that the derivatives Ḣp
sym

and Ḣp
skew exists. Let x ∈ Ω be a Lebesgue point for Ḣp

sym(t), Ḣp
skew(t),

∇aḢp
sym(t), T p(t), and Kdiss(t). If√︄

|T psym(t, x)|2 + 1
χ

|T pskew(t, x)|2 + 1
h2 |Kdiss(t, x)|2 < Y0 ,

then (Ḣp(t, x),∇aḢp
sym(t, x)) = 0. If instead√︄

|T psym(t, x)|2 + 1
χ

|T pskew(t, x)|2 + 1
h2 |Kdiss(t, x)|2 = Y0 ,

then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

T p(t, x) = Y0
Ḣp
sym(t, x) + χḢp

skew(t, x)√︂
|Ḣp

sym(t, x)|2 + χ|Ḣp
skew(t, x)|2 + h2|∇aḢp

sym(t, x)|2
,

Kdiss(t, x) = Y0
h2∇aḢp

sym(t, x)√︂
|Ḣp

sym(t, x)|2 + χ|Ḣp
skew(t, x)|2 + h2|∇aḢp

sym(t, x)|2
.



Proof. Let K be the convex set

K :=
{︂

(A,B) ∈ M3×3
D ×M3×3×3 : |(A,B)|∗H ≤ Y0

}︂
For a given 0 < ε < 1 we define

Pε(A,B) := (T p(t) + ε(A− T p(t)),Kdiss(t) + ε(B −Kdiss(t))) ∀ (A,B) ∈ K .

Let us fix a pair (A,B) ∈ K. Note that we have

Pε(A,B) ∈ L∞(Ω;M3×3
D ) × L∞(Ω;M3×3×3) .

For a given r > 0 we define

Fr(A,B)(y) =
{︄
Pε(A,B)(y) for a.e y ∈ Br(x) ,
(T p(t, y),Kdiss(t, y)) for a.e y ∈ Ω\Br(x) .

By the convexity of K, Fr is an admissible test function for the weak flow rule
given in item 1 of Theorem 5.2.2. Therefore,

ε

r3

[︄∫︂
Br(x)

(T p(t) −A) : Ḣp(t) dx+

∫︂
Br(x)

(Kdiss(t) −B) : ∇aḢp
sym(t) dx

]︄
≥ 0 . (5.40)

Passing to the limit as r → 0 in (5.40) and dividing by ε we obtain

(T p(t, x) −A) : Ḣp(t, x) + (Kdiss(t, x) −B) : ∇aḢp(t, x) ≥ 0 ∀ (A,B) ∈ K .

Let us denote by NK(A,B) the normal cone to K at the point (A,B). We have
proved that

(Ḣp(t, x),∇aḢp
sym(t, x)) ∈ NK(T p(t, x),Kp

diss(t, x)) .

If (T p(t, x),Kp
diss(t, x)) lies in the interior of K, then

(Ḣp(t, x),∇aḢp
sym(t, x)) = 0 .



If (T p(t, x),Kp
diss(t, x)) ∈ ∂K, then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ḣp(t, x) = δ

T psym(t, x) + 1
χ
T pskew(t, x)√︄

|T psym(t, x)|2 + 1
χ

|T pskew(t, x)|2 + 1
h2 |Kdiss(t, x)|2

,

∇aḢp
sym(t, x) = δ

1
h2Kdiss(t, x)√︄

|T psym(t, x)|2 + 1
χ

|T pskew(t, x)|2 + 1
h2 |Kdiss(t, x)|2

for some δ > 0, that is,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
T p(t, x) = Y0

Ḣp
sym(t, x) + χḢp

skew(t, x)
δ

,

Kp
diss(t, x) = Y0

h2∇aḢp
sym(t, x)
δ

.

To satisfy the constraint√︄
|T psym(t, x)|2 + 1

χ
|T pskew(t, x)|2 + 1

h2 |Kdiss(t, x)|2 = Y0 ,

it must necessarily be that

δ =
√︂

|Ḣp
sym(t, x)|2 + χ|Ḣp

skew(t, x)|2 + h2|∇aḢp
sym(t, x)|2 .

This concludes the proof.



Chapter 6

Asymptotic analysis

In this chapter we will study the behavior of the energetic solutions to the
Gurtin model as χ → ∞ and L, h → 0.

In the first section we will show that, as χ → ∞, the solutions converge in
a suitable sense to a solution to the model introduced by Gurtin and Anand in
[11] and studied by Giacomini and Lussardi in [6].

In the second section we will prove that, as h, L → 0, solutions to the Gurtin
model converge in a suitable sense to a solution to the Prandtl-Reuss model of
perfect plasticity studied in [15] by Dal Maso, DeSimone, and Mora. This result
holds independently of the behavior χ.

6.1 Asymptotic behavior as χ → ∞

6.1.1 The Gurtin-Anand model

Giacomini and Lussardi studied in [6] the model proposed by Gurtin and Anand
in [11] with the same energetic approach used in this manuscript. For the sake
of brevity, we will refer to this model as GA. In contrast with the Gurtin model,
in GA only the symmetric gradient is additively decomposed into an elastic and
a plastic strain

Eu = He +Hp .

In particular, the GA model does not depend on the skew-symmetric part of
Hp.

Given a boundary value z ∈ H1(Ω;R3) we will say that a triplet (u,He, Hp)
is admissible for the boundary value z in the GA model if and only if

u ∈ W 1, 3
2 (Ω;R3) , He ∈ L2(Ω;M3×3

sym) ,
Hp ∈ BV(Ω;M3×3

D,sym) , curlHp ∈ L2(Ω;M3×3) , (6.1)

Eu = He +Hp , (6.2)

u = z in L
3
2 (ΓD;R3) . (6.3)
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We will denote by AGA(z) the set of all admissible triplets for the boundary
value z in the GA model.

We define the plastic dissipation functional for the GA model as follows:

HGA : BV(Ω;M3×3
D,sym) → R

Hp ↦→ Y0

∫︂
Ω

√︂
|Hp|2 + h2|∇aHp|2 dx+ hY0|∇sHp|(Ω) . (6.4)

HGA is lower semicontinuous with respect to the weak∗ convergence in BV. We
denote by VHGA

, as we have already done for H, the HGA-variation. Argu-
ing as in Proposition 3.2.4, it is possible to show that VHGA

is weakly∗ lower
semicontinuous.

The free energy in GA is the same that we used in the previous chapters.
However, note that in GA

Ψ2(curl(Hp)) = µL2

2

∫︂
Ω

| curl(Hp)|2 dx

depends only on the symmetric part of Hp.
Let us fix a boundary displacement w and some forces f, g as in (3.26) and

(3.25). We assume the existence of a function ρ as in (3.47) such that (3.48)
and (3.50) hold.

An energetic solution for GA is a map

t ↦→ (u(t), He(t), Hp(t))

such that the following properties hold:

• Admissibility:

(u(t), He(t), Hp(t)) ∈ AGA(w(t)) ∀ t ∈ [0, T ] , (6.5)

• Global stability:

E(t) ≤ Ψ1(e) + Ψ2(curl(p)) − ⟨L(t), v⟩ + HGA(p−Hp(t))
∀ (v, e, p) ∈ AGA(w(t)) ∀ t ∈ [0, T ] , (6.6)

• Bounded variation: Hp has bounded variation as a map

Hp : [0, T ] → BV(Ω;M3×3
D,sym) ,

• Energy balance:

E(t) + VHGA
(Hp; 0, t) = E(0) +

∫︂ t

0

∫︂
Ω
CHe(τ) : Eẇ(τ) dxdτ

−
∫︂ t

0
⟨L̇(τ), u(τ)⟩ dτ −

∫︂ t

0
⟨L(τ), ẇ(τ)⟩ dτ ∀ t ∈ [0, T ] , (6.7)



where
E(t) := Ψ1(He(t)) + Ψ2(curl(Hp(t))) − ⟨L(t), u(t)⟩ .

6.1.2 The convergence result

Let (χn)n∈N be a sequence of positive numbers such that χn → +∞ and let
(u0n, H

e
0n, H

p
0n) be a sequence of initial data such that

u0n ⇀ u0 in W 1, 3
2 (Ω;R3) , (6.8)

He
0n,sym → He

0 in L2(Ω;M3×3
sym) , (6.9)

Hp
0n,sym

∗
⇀ Hp

0 in BV(Ω;M3×3
D,sym) , (6.10)

Hp
0n,skew

∗
⇀ 0 in Mb(Ω;M3×3

skew) , (6.11)
curl(Hp

0n) → curl(Hp
0 ) in L2(Ω;M3×3) (6.12)

In particular, we have the convergence of the free energy

Ψ(He
0n, curl(Hp

0n)) → Ψ(He
0 , curl(Hp

0 )) . (6.13)

For every n ∈ N let
t ↦→ (un(t), He

n(t), Hp
n(t))

be an energetic solution to the Gurtin model with χ = χn, boundary datum w,
and initial datum (u0n, H

e
0n, H

p
0n).

Owing to Theorem 5.2.1 and Corollary 5.2.1, we can apply Theorem 2.1.1
and infer that there exist

u ∈ AC(0, T ;W 1, 3
2 (Ω;R3)) ,

He ∈ AC(0, T ;L2(Ω;M3×3
sym)) ,

Hp ∈ AC(0, T ; BV(Ω;M3×3
skew)) ,

and a subsequence (χnk
) such that for every t ∈ [0, T ]

unk
(t) ⇀ u(t) in W 1, 3

2 (Ω;R3) , (6.14)
He
nk,sym

(t) ⇀ He(t) in L2(Ω;M3×3
sym) , (6.15)

Hp
nk,sym

(t) ∗
⇀ Hp(t) in BV(Ω;M3×3

D,sym) . (6.16)

Indeed, the sequences (un)n∈N, (He
n,sym)n∈N, and (Hp

n,sym)n∈N are equiabso-
lutely continuous with respect to n with values in the corresponding spaces.
Note that, by construction, the map

Hp : [0, T ] → BV(Ω;M3×3
D,sym)

has bounded variation. For every q in the predual of Mb(Ω;M3×3
skew) we have

|⟨Hp
nk,skew

(t), q⟩| ≤ ∥Hp
nk,skew

(t) −Hp
nk,skew

(0)∥Mb
∥q∥C0

+ |⟨Hp
nk,skew

(0), q⟩| ≤ V(Hp
nk

; 0, t)∥q∥C0 + |⟨Hp
nk,skew

(0), q⟩| .



By Proposition 4.3.1 and Remark 4.3.1 we have

V(Hp
nk,skew

; 0, t) ≤ C2
βnk

→ 0 ,

where βnk
is defined as in Proposition 4.1.3 with χ = χnk

. Therefore, we deduce
that for every t ∈ [0, T ]

Hp
nk,skew

(t) ∗
⇀ 0 in Mb(Ω;M3×3

skew) . (6.17)

We now show that the map

t ↦→ (u(t), He(t), Hp(t))

is an energetic solution for GA.
Proposition 6.1.1. The admissibility (6.5) holds for the map

t ↦→ (u(t), He(t), Hp(t)) .

Proof. Let t ∈ [0, T ]. The sequence (curl(Hp
nk

(t)))k is uniformly bounded
with respect to k owing to Proposition 4.3.1 and Remark 4.3.1. Hence, by
Lemma 4.1.1 and convergences (6.16)-(6.17) we have

curl(Hp
nk

(t)) ⇀ curl(Hp(t)) in L2(Ω;M3×3) ∀ t ∈ [0, T ] . (6.18)

Therefore, condition (6.1) hold. By the decomposition

Eunk
(t) = He

nk,sym
(t) +Hp

nk,sym
(t) ∀ k ∈ N

passing to the limit we obtain (6.2). Finally, (6.3) holds trivially.

For the rest of the section we denote by Hn the plastic dissipation for the
Gurtin model with χ = χn and by En the functional E defined as in (3.58) for
the map

t ↦→ (un(t), He
n(t), Hp

n(t)) .
Proposition 6.1.2. The global stability condition (6.6) holds for the map

t ↦→ (u(t), He(t), Hp(t)) .

Proof. Let t ∈ [0, T ] and (v, e, p) ∈ AGA(0). The triplet (v, e + (∇v − Ev), p)
belongs to A(0). Hence by Lemma 3.2.1, for every k ∈ N⃓⃓⃓⃓∫︂

Ω
CHe

nk,sym
(t) : e dx+ µL2

∫︂
Ω

curl(Hp
nk

(t)) : curl(p) dx− ⟨L(t), v⟩
⃓⃓⃓⃓

≤ Hnk
(p) .

Since p takes values in the space of symmetric matrices, we have Hnk
(p) =

HGA(p). Therefore, by convergences (6.15) and (6.18), passing to the limit as
k → ∞ we obtain⃓⃓⃓⃓∫︂

Ω
CHe(t) : e dx+ µL2

∫︂
Ω

curl(Hp(t)) : curl(p) dx− ⟨L(t), v⟩
⃓⃓⃓⃓



≤ HGA(p) . (6.19)

Consider the convex functional

F(v, e, p) := Ψ1(e) + Ψ2(curl(p)) − ⟨L(t), v⟩ + HGA(p−Hp(t))

defined on the convex set AGA(w(t)). Now let (v, e, p) ∈ AGA(w(t)) and λ ∈
(0, 1]. By convexity we obtain

F(v, e, p) − F(u(t), He(t), Hp(t)) = 1
λ

[F(u(t), He(t), Hp(t))

+ λ(F(v, e, p) − F(u(t), He(t), Hp(t))) − F(u(t), He(t), Hp(t))]

≥ 1
λ

[F(u(t) + λ(v − u(t)), He(t) + λ(e−He(t)), Hp(t) + λ(p−Hp(t)))

− F(u(t), He(t), Hp(t))] = λΨ1(e−He(t)) + λΨ2(curl(p−Hp(t)))

+
∫︂

Ω
CHe(t) : (e−He(t)) dx+ µL2

∫︂
Ω

curl(Hp(t)) : (curl(p−Hp(t))) dx

− ⟨L(t), v − u(t)⟩ + HGA(p−Hp(t)) (6.20)

Note that the triplet

(v − u(t), e−He(t), p−Hp(t))

belongs to AGA(0), hence by (6.19) the right-hand side of (6.20) is nonnegative.
Therefore, we have proved that

F(v, e, p) − F(u(t), He(t), Hp(t)) ≥ 0 ∀ (v, e, p) ∈ AGA(w(t))

that is, the global stability condition (6.6).

Proposition 6.1.3. The map

t ↦→ (u(t), He(t), Hp(t))

satisfies the following energy inequality:

E(t) + VHGA
(Hp; 0, t) ≤ E(0) +

∫︂ t

0

∫︂
Ω
CHe(τ) : Eẇ(τ) dxdτ

−
∫︂ t

0
⟨L̇(τ), u(τ)⟩ dτ −

∫︂ t

0
⟨L(τ), ẇ(τ)⟩ dτ ∀ t ∈ [0, T ] .

Proof. Let t ∈ [0, T ]. By definition of energetic solution we have

Enk
(t) + VHnk

(Hp
nk

; 0, t) = Enk
(0) +

∫︂ t

0

∫︂
Ω
CHe

nk,sym
(τ) : Eẇ(τ) dxdτ

−
∫︂ t

0
⟨L̇(τ), unk

(τ)⟩ dτ −
∫︂ t

0
⟨L(τ), ẇ(τ)⟩ dτ ∀ t ∈ [0, T ] .

for every k ∈ N. By dominated convergence and (6.13)-(6.15), the right-hand



side converges to

E(0) +
∫︂ t

0

∫︂
Ω
CHe(τ) : Eẇ(τ) dxdτ −

∫︂ t

0
⟨L̇(τ), u(τ)⟩ dτ −

∫︂ t

0
⟨L(τ), ẇ(τ)⟩ dτ

Since Ψ1,Ψ2, and L(t) are weakly lower semicontinuous with respect to the
natural convergences, we obtain

E(t) ≤ lim inf
n→∞

Enk
(t) .

Let 0 = t0, . . . , th = t be a partition of [0, t]. By definition of HGA we have

VHnk
(Hp

nk
; 0, t) ≥

h∑︂
i=1

Hnk
(Hp

nk
(ti) −Hp

nk
(ti−1))

≥
h∑︂
i=1

HGA(Hp
nk,sym

(ti) −Hp
nk,sym

(ti−1)) .

Passing to the supremum over all partitions of the interval [0, t] we obtain by
the weak∗ lower semicontinuity of VHGA

VHGA
(Hp; 0, t) ≤ lim inf

k→∞
VHGA

(Hp
nk,sym

; 0, t) ≤ lim inf
k→∞

VHnk
(Hp

nk
; 0, t) .

Combining all these results together the proof is concluded.

Finally, arguing as in Lemma 7.3 in [6], the converse energy inequality can
be proved. Therefore, the map

t ↦→ (u(t), He(t), Hp(t))

is an energetic solution for the GA model.

6.1.3 A few considerations

The Gurtin-Anand model is obtained from the Gurtin model assuming that the
body is plastically irrotational, i.e., the plastic spin is null. For this reason we
have to assume condition (6.11) on the initial data. With this assumption we
fully recover the energetic formulation given by Giacomini and Lussardi in [6].
If, instead, we assume that

Hp
0n,skew

∗
⇀W0 in Mb(Ω;M3×3

skew) (6.21)

with W0 ̸≡ 0, the same argument as in the previous section shows that

Hp
nk,skew

(t) ∗
⇀W0 in Mb(Ω;M3×3

skew) ∀ t ∈ [0, T ] .



Therefore, the body has constant, but nonzero, plastic spin. At the limit one
obtains a free energy of the form

Ψ(He, Hp) = 1
2

∫︂
Ω
CHe : He dx+ µL2

2

∫︂
Ω

curl(Hp +W0) dx . (6.22)

In particular, we do not recover a solution in the framework given by Giacomini
and Lussardi. However, one could modify the notion of admissible triplets
and the definition of free energy for the GA model accounting for a fixed and
constant plastic spin W0. More precisely, we could require

curl(Hp +W0) ∈ L2(Ω;M3×3)

instead of
curl(Hp) ∈ L2(Ω;M3×3)

in (6.1) and define the free energy as in (6.22). The model obtained should still
satisfy the same flow rule. Moreover, we expect to retrieve a solution of such
model when χ → +∞ if we assume (6.21) in place of (6.11).

We conclude the section by observing that for every initial datum (u0, H
e
0 , H

p
0 )

for the GA model it is always possible to construct a sequence (u0n, H
e
0n, H

p
0n)n

of initial data for the Gurtin model that satisfies convergences (6.8)-(6.12).
Indeed, one can simply take

(u0n, H
e
0n, H

p
0n) := (u0, H

e
0 + (∇u0 − Eu0), Hp

0 ) .

6.2 Asymptotic behavior as h, L → 0

In [6] the authors show the convergence of energetic solutions to the GA model
to energetic solutions to the Prandtl-Reuss model of perfect plasticity studied
in [15] by Dal Maso, DeSimone, and Mora. In this section we aim at extending
this result to sequences of energetic solutions to the Gurtin model.

We will assume in this section that Ω and Γ are of class C2 where Γ is the
shared boundary of ΓD and ΓN (with respect to the relative topology on ∂Ω).

6.2.1 The Prandtl-Reuss model

We briefly introduce the Prandtl-Reuss model, henceforth abbreviated as PR.
As in the GA model, there is no dependence on the skew-symmetric part of the
strains.

Given a boundary value z ∈ H1(Ω;R3) we will say that a triplet (u,He, Hp)
is admissible for the boundary value z in the PR model if and only if

u ∈ BD(Ω) , He ∈ L2(Ω;M3×3
sym) ,

Hp ∈ Mb(Ω ∪ ΓD;M3×3
D,sym) , (6.23)



Eu = He +Hp , (6.24)
Hp = (w − u) ⊙ νH 2 on ΓD . (6.25)

Here BD(Ω) is the space of functions with bounded deformation (see Section 2.1)
and ν is the outer normal vector to ∂Ω. We will denote by AP R(z) the set of
admissible triplets for the boundary value z in the PR model.

The plastic dissipation functional is defined once again using the notion of
convex functions of measure introduced in [9]. More precisely,

HP R : Mb(Ω ∪ ΓD;M3×3
D,sym) → R : Hp ↦→ Y0

∫︂
Ω∪ΓD

⃓⃓⃓⃓
Hp

|Hp|

⃓⃓⃓⃓
d|Hp| , (6.26)

where |Hp| is the total variation of Hp and Hp

|Hp|
is the Radon-Nikodým deriva-

tive of Hp with respect to |Hp|. In particular, if Hp is absolutely continuous
with respect to L 3, then

HP R(Hp) = Y0

∫︂
Ω

|Hp| dx .

HP R is lower semicontinuous with respect to the weak∗ convergence in Mb(Ω ∪
ΓD;M3×3

sym) by construction (see Theorem 3 in [9]). As a result, the HP R-
variation, denoted by VHP R

, is weakly∗ lower semicontinuous, too.
In the PR model the free energy does not depend on the Burgers vector and

reduces to Ψ1.
Let us fix a boundary displacement w as in (3.26) and the forces

f ∈ AC(0, T ;L3(Ω;R3)) , g ∈ AC(0, T ;L∞(ΓN ;R3)) . (6.27)

Here we need to assume that g takes values in L∞(ΓN ;R3) since the trace of
admissible displacements belongs to L1(∂Ω;R3). We assume the existence of a
function ρ as in (3.47) such that (3.48) and (3.50) hold.

An energetic solution for the PR model is a map

t ↦→ (u(t), He(t), Hp(t))

such that the following properties hold:
• Admissibility:

(u(t), He(t), Hp(t)) ∈ AP R(w(t)) ∀ t ∈ [0, T ] , (6.28)

• Global stability:

EP R(t) ≤ Ψ1(e) − ⟨L(t), v⟩ + HP R(p−Hp(t))
∀ (v, e, p) ∈ AP R(w(t)) ∀ t ∈ [0, T ] , (6.29)

• Bounded variation: Hp has bounded variation as a map

Hp : [0, T ] → Mb(Ω ∪ ΓD;M3×3
D,sym) ,



• Energy balance:

EP R(t) + VHP R
(Hp; 0, t) = EP R(0) +

∫︂ t

0

∫︂
Ω
CHe(τ) : Eẇ(τ) dxdτ

−
∫︂ t

0
⟨L̇(τ), u(τ)⟩ dτ −

∫︂ t

0
⟨L(τ), ẇ(τ)⟩ dτ ∀ t ∈ [0, T ] , (6.30)

where
EP R(t) := Ψ1(He(t)) − ⟨L(t), u(t)⟩ .

6.2.2 The convergence result

Let (Ln) and (hn) be sequences such that hn, Ln → 0. As done for the derivation
of the GA model, we assume to have a sequence of initial data (u0n, H

e
0n, H

p
0n)

such that

u0n
∗
⇀ u0 in BD(Ω;R3) , (6.31)

He
0n,sym → He

0 in L2(Ω;M3×3
sym) , (6.32)

Hp
0n,sym

∗
⇀ Hp

0 in Mb(Ω;M3×3
D,sym) . (6.33)

Moreover, we assume that the sequence (curl(Hp
0n))n is bounded in L2(Ω;M3×3).

Hence, we deduce the convergence of the free energy

Ψ1(He
0n) + µL2

n

2

∫︂
Ω

| curl(Hp
0n)|2 dx → Ψ1(He

0) , (6.34)

For every n ∈ N let
t ↦→ (un(t), He

n(t), Hp
n(t))

be an energetic solution to the Gurtin model with h = hn, L = Ln, and initial
datum (u0n, H

e
0n, H

p
0n). The next lemma grants the existence of a suitable

converging subsequence of energetic solutions.

Lemma 6.2.1. There exist a subsequence (nk) and two functions

u ∈ AC(0, T ; BD(Ω))
He ∈ AC(0, T ;L2(Ω;M3×3

sym))

such that for every t ∈ [0, T ]

unk
(t) ∗

⇀ u(t) in BD(Ω;R3) , (6.35)
He
nk,sym

(t) ⇀ He(t) in L2(Ω;M3×3
sym) . (6.36)

Morevoer, there exists a function Hp ∈ AC(0, T ; Mb(Ω ∪ ΓD;M3×3
D,sym)) such

that for every t ∈ [0, T ], by setting Hp
n,sym(t) = 0 on ΓD for every n ∈ N, we

have
Hp
nk,sym

(t) ∗
⇀ Hp(t) in Mb(Ω ∪ ΓD;M3×3

D,sym) . (6.37)

Finally, for every t ∈ [0, T ] the triplet (u(t), He(t), Hp(t)) is admissible for the



boundary value w(t) in the PR model.

Proof. Since ΓD is open in ∂Ω there exists U ⊂ R3 open such that ΓD = ∂Ω∩U .
Let ˜︁Ω := Ω ∪ U . We define

˜︁un(t) =
{︄
u(t) on Ω
w(t) on ˜︁Ω\Ω

˜︁He
n,sym(t) =

{︄
He
n,sym(t) on Ω

Ew(t) on ˜︁Ω\Ω

˜︁Hp
n,sym(t) =

{︄
Hp
n,sym(t) on Ω

0 on ˜︁Ω\Ω

By Corollary 5.2.1 and convergences (6.31)-(6.34), the sequences ( ˜︁He
n,sym) and

( ˜︁Hp
n,sym) are equi-absolutely continuous with respect to n as maps with values

in L2(˜︁Ω;M3×3
sym) and L1(˜︁Ω;M3×3

D,sym), respectively. Observe that

E˜︁un(t) = ˜︁He
n,sym(t) + ˜︁Hp

n,sym(t) on ˜︁Ω . (6.38)

Therefore, by Theorem 2.2.5 (˜︁un) is equi-absolutely continuous with respect to
n as maps with values in BD(˜︁Ω;R3). Applying Theorem 2.1.1 we deduce that
there exists a subsequence (nk) and maps

˜︁u ∈ AC(0, T ; BD(˜︁Ω;R3)) ,˜︁He ∈ AC(0, T ;L2(˜︁Ω;M3×3
sym)) ,˜︁Hp ∈ AC(0, T ; Mb(˜︁Ω;M3×3
D,sym)) ,

such that for every t ∈ [0, T ]

˜︁unk
(t) ∗

⇀ ˜︁u(t) in BD(˜︁Ω;R3) ,˜︁He
nk,sym

(t) ⇀ ˜︁He(t) in L2(˜︁Ω;M3×3
sym) ,˜︁Hp

n,sym(t) ∗
⇀ ˜︁Hp(t) in Mb(˜︁Ω;M3×3

D,sym) .

We define u and He as the restriction of ˜︁u and ˜︁He, respectively, to Ω. Similarly,
we define Hp as the restriction of ˜︁Hp to Ω∪ΓD. Therefore, convergences (6.35)
and (6.36) follow immediately. On ˜︁Ω\Ω it must be ˜︁Hp = 0, thus, convergence
(6.37) holds. Let t ∈ [0, T ]. Passing to the limit in (6.38) we obtain

E˜︁u(t) = ˜︁He(t) + ˜︁Hp(t) on ˜︁Ω .

Since on ˜︁Ω\Ω it must be ˜︁u(t) = w(t) and ˜︁He(t) = Ew(t) we deduce that on ΓD

˜︁Hp(t) = E˜︁u(t) = (w(t) − u(t)) ⊙ νH 2 .

This proves that the triplet (u(t), He(t), Hp(t)) is admissible for the boundary
value w(t) in the PR model.

Let u,He, and Hp be the maps given in Lemma 6.2.1. We are now in a



position to prove that the map

t ↦→ (u(t), He(t), Hp(t)) ,

is an energetic solution to the PR model. By the previous lemma we only need
to prove the global stability (6.29) and the energy balance (6.30).

Proposition 6.2.1. The map

t ↦→ (u(t), He(t), Hp(t))

satisfies the global stability (6.29).

Proof. For every t ∈ [0, T ] let T (t) = CHe(t). In view of Theorem 3.6 in [15] it
is sufficient to prove that for every t ∈ [0, T ]{︄

− divT (t) = f(t) in L2(Ω;R3) ,
γν(T (t)) = g(t) on ΓN ,

and |TD(t)| ≤ Y0 almost everywhere in Ω. The condition on the normal trace
has to be intended as stated in Proposition 5.1.1. Let t ∈ [0, T ] and let Tnk

(t) =
CHe

nk,sym
(t). By Proposition 5.1.1, for every k ∈ N we have{︄

− divTnk
(t) = f(t) in L2(Ω;R3) ,

γν(Tnk
(t)) = g(t) on ΓN .

By convergence (6.36) we deduce

Tnk
(t) ⇀ T (t) in L2(Ω;M3×3

sym) . (6.39)

By a density argument similar to the one used in Lemma 4.1.1 it is possible to
prove that divTnk

(t) ⇀ divT (t), hence,

− divT (t) = f(t) in L2(Ω;R3) .

In particular, by the definition of γν , we infer that γν(T (t)) = g(t) on ΓN .
Let T pnk

,Knk,diss,Knk,en, and Rnk
(t) be the plastic stresses given by Proposi-

tion 5.1.2, (5.10), and (5.1) for the energetic solution

t ↦→ (unk
(t), He

nk
(t), Hp

nk
(t)) .

By Proposition 4.3.1 and Remark 4.3.1 we have

∥Rnk
(t)∥L2 = µL2

nk
∥ curl(Hp

nk
(t))∥L2 ≤ 2Lnk

√︁
C2µ → 0 .

Therefore, Knk,en(t) → 0 in L2(Ω;M3×3). Since by Proposition 5.2.1 the con-
straint √︄

|T pnk,sym(t)|2 + 1
h2
nk

|Knk,diss(t)|2 ≤ Y0 a.e. in Ω (6.40)



holds for every k ∈ N, we deduce that

Knk,diss(t) → 0 in L∞(Ω;M3×3×3
D ) .

Hence, Knk
(t) → 0 in L2(Ω;M3×3×3

D ). By Proposition 5.1.3 we have that

T pnk,sym
(t) = Tnk,D(t) + (div(Knk

(t)))sym in L2(Ω;M3×3
D ) ∀ k ∈ N . (6.41)

Combining (6.40) and (6.41) we deduce that the sequence ((divKnk
(t))sym)k is

bounded in L2(Ω;M3×3), thus

(divKkn(t))sym ⇀ 0 in L2(Ω;M3×3) . (6.42)

Finally, by (6.41) we infer

T pnk,sym
(t) ⇀ TD(t) in L2(Ω;M3×3

D ) . (6.43)

We define

K =
{︂
A ∈ L2(Ω;M3×3

D ) : |Asym| ≤ Y0 a.e in Ω
}︂
.

Since by Proposition 5.2.1 T pnk
(t) ∈ K for every k ∈ N and K is closed with

respect to weak convergence, we deduce that TD(t) ∈ K concluding the proof.

Before introducing the next proposition it is important to recall that the
weak∗ convergence in BD(Ω;R3) is sufficient to guarantee convergence of the
volume force term, but not of the surface force term. Indeed, the trace operator

γ : BD(Ω;R3) → L1(∂Ω;R3)

is not continuous if we equip BD(Ω;R3) of the weak∗ topology. The safe-load
condition will be crucial to overcome this problem.

Proposition 6.2.2. The map

t ↦→ (u(t), He(t), Hp(t))

satisfies the following energy inequality:

EP R(t) + VHP R
(Hp; 0, t) ≤ EP R(0) +

∫︂ t

0

∫︂
Ω
CHe(τ) : Eẇ(τ) dxdτ

−
∫︂ t

0
⟨L̇(τ), u(τ)⟩ dτ −

∫︂ t

0
⟨L(τ), ẇ(τ)⟩ dτ ∀ t ∈ [0, T ] .

Proof. By definition of energetic solution, we have

Enk
(t) + VHnk

(Hp
nk

; 0, t) = Enk
(0) +

∫︂ t

0

∫︂
Ω
CHe

nk,sym
(τ) : Eẇ(τ) dxdτ

−
∫︂ t

0
⟨L̇(τ), unk

(τ)⟩ dτ −
∫︂ t

0
⟨L(τ), ẇ(τ)⟩ dτ ∀ t ∈ [0, T ] (6.44)



for every k ∈ N, where

Enk
(t) = Ψ1(He

nk,sym
(t)) +

µL2
nk

2

∫︂
Ω

| curl(Hp
nk

(t))|2 dx− ⟨L(t), unk
(t)⟩

and Hnk
is the plastic dissipation for the Gurtin model with h = hnk

.
Let t ∈ [0, T ]. Integrating by parts, (6.44) can be rewritten in the following
form:

Ψ1(He
nk,sym

(t)) +
µL2

nk

2

∫︂
Ω

| curl(Hp
nk

(t))|2 dx+ VHnk
(Hp

nk
; 0, t)

−
∫︂ t

0
⟨L(τ), u̇nk

(τ)⟩ dτ = Ψ1(He
nk,sym

(0)) +
µL2

nk

2

∫︂
Ω

| curl(Hp
nk

(0))|2 dx

+
∫︂ t

0

∫︂
Ω
CHe

nk,sym
(τ) : Eẇ(τ) dxdτ −

∫︂ t

0
⟨L(τ), ẇ(τ)⟩ dτ . (6.45)

Owing to convergences (6.34) and (6.36), the right-hand side of (6.45) converges
by dominated convergence to

Ψ1(He(0)) +
∫︂ t

0

∫︂
Ω
CHe(τ) : Eẇ(τ) dxdτ −

∫︂ t

0
⟨L(τ), ẇ(τ)⟩ dτ .

By convexity Ψ1 is weakly lower semicontinuous, hence,

Ψ1(He(t)) ≤ lim inf
k→∞

[︄
Ψ1(He

nk,sym
(t)) +

µL2
nk

2

∫︂
Ω

| curl(Hp
nk

(t))|2 dx
]︄
.

To conclude it is sufficient to prove that

lim inf
k→∞

[︃
VHnk

(Hp
nk

; 0, t) −
∫︂ t

0
⟨L(τ), u̇nk

(τ)⟩ dτ
]︃

≥ VHP R
(Hp; 0, t) −

∫︂ t

0
⟨L(τ), u̇(τ)⟩ dτ

= VHP R
(Hp; 0, t) + ⟨L(0), u(0)⟩ − ⟨L(t), u(t)⟩ +

∫︂ t

0
⟨L̇(τ), u(τ)⟩ dτ .

Applying Theorem 7.1 in [15] we write

VHnk
(Hp

nk
; 0, t) =

∫︂ t

0
Hnk

(Ḣp
nk

(τ)) dτ ≥
∫︂ t

0

∫︂
Ω
Y0|Ḣp

nk,sym
(τ)| dxdτ . (6.46)

By Proposition 3.2.5 we have∫︂ t

0
⟨L(τ), u̇nk

(τ)⟩ dτ =
∫︂ t

0
⟨L(τ), ẇ(τ)⟩ dτ −

∫︂ t

0

∫︂
Ω
ρ(τ) : Eẇ(τ) dxdτ

+
∫︂ t

0

∫︂
Ω
ρ(τ) : Ḣe

nk,sym
(τ) dxdτ +

∫︂ t

0

∫︂
Ω
ρD(τ) : Ḣp

nk,sym
(τ) dxdτ

= ⟨L(t), w(t)⟩ − ⟨L(0), w(0)⟩ −
∫︂ t

0
⟨L̇(τ), w(τ)⟩ dτ +

∫︂
Ω
ρ(0) : Ew(0) dx



−
∫︂

Ω
ρ(t) : Ew(t) dx+

∫︂ t

0

∫︂
Ω
ρ̇(τ) : Ew(τ) dx+

∫︂
Ω
ρ(t) : He

nk,sym
(t) dx

−
∫︂

Ω
ρ(0) : He

nk,sym
(0) dx−

∫︂ t

0

∫︂
Ω
ρ̇(τ) : He

nk,sym
(τ) dx

+
∫︂ t

0

∫︂
Ω
ρD(τ) : Ḣp

nk,sym
(τ) dxdτ . (6.47)

Combining (6.46) and (6.47), by the convergence (6.36) we obtain

lim inf
k→∞

[︃
VHnk

(Hp
nk

; 0, t) −
∫︂ t

0
⟨L(τ), u̇nk

(τ)⟩ dτ
]︃

≥ lim inf
k→∞

∫︂ t

0

∫︂
Ω

[︂
Y0|Ḣp

nk,sym
(τ)| − ρD(τ) : Ḣp

nk,sym
(τ)
]︂
dxdτ

− ⟨L(t), w(t)⟩ + ⟨L(0), w(0)⟩ +
∫︂ t

0
⟨L̇(τ), w(τ)⟩ dτ −

∫︂
Ω
ρ(0) : Ew(0) dx

+
∫︂

Ω
ρ(t) : Ew(t) dx−

∫︂ t

0

∫︂
Ω
ρ̇(τ) : Ew(τ) dx−

∫︂
Ω
ρ(t) : He(t) dx

+
∫︂

Ω
ρ(0) : He(0) dx+

∫︂ t

0

∫︂
Ω
ρ̇(τ) : He(τ) dx . (6.48)

Owing to Proposition 2.2 in [15] we rewrite the right-hand side of (6.48) as
follows:

lim inf
k→∞

∫︂ t

0

∫︂
Ω

[︂
Y0|Ḣp

nk,sym
(τ)| − ρD(τ) : Ḣp

nk,sym
(τ)
]︂
dxdτ

+ ⟨L(0), u(0)⟩ − ⟨L(t), u(t)⟩ +
∫︂ t

0
⟨L̇(τ), u(τ)⟩ dτ − [ρD(0) : Hp(0)](Ω ∪ ΓD)

+ [ρD(t) : Hp(t)](Ω ∪ ΓD) −
∫︂ t

0
[ρ̇D(τ) : Hp(τ)](Ω ∪ ΓD) dτ , (6.49)

where [ρD(t) : Hp(t)] is the measure defined in section 2 of [15]. Therefore, the
proof is concluded if we show

lim inf
k→∞

∫︂ t

0

∫︂
Ω

[︂
Y0|Ḣp

nk,sym
(τ)| − ρD(τ) : Ḣp

nk,sym
(τ)
]︂
dxdτ

≥ VHP R
(Hp; 0, t) + [ρD(0) : Hp(0)](Ω ∪ ΓD)

− [ρD(t) : Hp(t)](Ω ∪ ΓD) +
∫︂ t

0
[ρ̇D(τ) : Hp(τ)](Ω ∪ ΓD) dτ . (6.50)

Let φ ∈ C1(Ω) be a function such that 0 ≤ φ ≤ 1 and φ = 0 on ΓN . By (3.50)
we have that |ρD(τ)| ≤ Y0 almost everywhere in Ω for every τ ∈ [0, t]. Hence,
the function

Y0|Ḣp
nk,sym

(τ)| − ρD(τ) : Ḣp
nk,sym

(τ)

is positive almost everywhere in Ω for every τ ∈ [0, t]. Therefore, applying once
again Theorem 7.1 in [15] we deduce∫︂ t

0

∫︂
Ω

[︂
Y0|Ḣp

nk,sym
(τ)| − ρD(τ) : Ḣp

nk,sym
(τ)
]︂
dxdτ



≥
∫︂ t

0

∫︂
Ω

[︂
Y0|φḢp

nk,sym
(τ)| − ρD(τ) : φḢp

nk,sym
(τ)
]︂
dxdτ

= VHP R
(φHp

nk,sym
; 0, t) −

∫︂ t

0

∫︂
Ω
ρD(τ) : φḢp

nk,sym
(τ) dxdτ . (6.51)

Passing to the limit in (6.51) we obtain, by the lower semicontinuity of the
HP R-variation

lim inf
k→∞

∫︂ t

0

∫︂
Ω

[︂
Y0|Ḣp

nk,sym
(τ)| − ρD(τ) : Ḣp

nk,sym
(τ)
]︂
dxdτ

≥ VHP R
(φHp; 0, t) + lim inf

k→∞

[︃
−
∫︂ t

0

∫︂
Ω
ρD(τ) : φḢp

nk,sym
(τ) dxdτ

]︃
. (6.52)

Integrating by parts we write

−
∫︂ t

0

∫︂
Ω
ρD(τ) : φḢp

nk,sym
(τ) dxdτ = −

∫︂
Ω
ρD(t) : φHp

nk,sym
(t) dx

+
∫︂

Ω
ρD(0) : φHp

nk,sym
(0) dx+

∫︂ t

0

∫︂
Ω
ρ̇D(τ) : φHp

nk,sym
(τ) dxdτ . (6.53)

Since W 1, 3
2 (Ω,R3) is continuously embedded in L2(Ω;R3), for every k ∈ N and

for every τ ∈ [0, t]

(φunk
(τ), φHe

nk
(τ) + ∇φ⊗ u(τ), φHp

nk
(τ)) ∈ A(φw(t)) .

Hence, by Proposition 3.2.6 we have∫︂ t

0

∫︂
Ω
ρ̇D(τ) : φHp

nk,sym
(τ) dxdτ = −

∫︂ t

0
⟨L̇(τ), φw(τ)⟩ dτ

+
∫︂ t

0

∫︂
Ω
ρ̇(τ) : φEw(τ) dxdτ +

∫︂ t

0

∫︂
Ω
ρ̇(τ) : (∇φ⊙ w(τ)) dxdτ

−
∫︂ t

0

∫︂
Ω
ρ̇(τ) : φHe

nk,sym
(τ) dxdτ −

∫︂ t

0

∫︂
Ω
ρ̇(τ) : (∇φ⊙ unk

(τ)) dxdτ

+
∫︂ t

0
⟨L̇(τ), φunk

(τ)⟩ dτ . (6.54)

Similarly, applying Proposition 3.2.5 we deduce∫︂
Ω
ρD(0) : φHp

nk,sym
(0) dx = −⟨L(0), φw(0)⟩ +

∫︂
Ω
ρ(0) : φEw(0) dx

+
∫︂

Ω
ρ(0) : (∇φ⊙ w(0)) dx−

∫︂
Ω
ρ(0) : φHe

nk,sym
(0) dx

−
∫︂

Ω
ρ(0) : (∇φ⊙ unk

(0)) dx+ ⟨L(0), φunk
(0)⟩ (6.55)

and

−
∫︂

Ω
ρD(t) : φHp

nk,sym
(t) dx = ⟨L(t), φw(t)⟩ −

∫︂
Ω
ρ(t) : φEw(t) dx



−
∫︂

Ω
ρ(t) : (∇φ⊙ w(t)) dx+

∫︂
Ω
ρ(t) : φHe

nk,sym
(t) dx

+
∫︂

Ω
ρ(t) : (∇φ⊙ unk

(t)) dx− ⟨L(t), φunk
(t)⟩ . (6.56)

It is crucial to observe that φunk
is zero on ΓN , thus, for every τ ∈ [0, t]

⟨L̇(τ), φunk
(τ)⟩ → ⟨L̇(τ), φu(τ)⟩ ,

⟨L(τ), φunk
(τ)⟩ → ⟨L(τ), φu(τ)⟩ .

By (6.53)-(6.56), the convergences (6.35)-(6.36), and Proposition 2.2 in [15] we
deduce

lim inf
k→∞

[︃
−
∫︂ t

0

∫︂
Ω
ρD(τ) : φḢp

nk,sym
(τ) dxdτ

]︃
=
∫︂

Ω∪ΓD

φ d[ρD(0) : Hp(0)]

−
∫︂

Ω∪ΓD

φ d[ρD(t) : Hp(t)] +
∫︂ t

0

∫︂
Ω∪ΓD

φ d[ρ̇D(τ) : Hp(τ)] dτ .

(6.57)

Combining (6.52) and (6.57) and passing to the limit as φ → 1Ω∪ΓD
we finally

obtain (6.50), concluding the proof.

Applying Theorem 4.7 in [15] the opposite energy inequality can be proved,
showing that the map

t ↦→ (u(t), He(t), Hp(t))

is an energetic solution to the PR model.
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